83 research outputs found

    The environmental dependence of redox energetics of PuO2 and \alpha-Pu2O3: A quantitative solution from DFT+U calculations

    Full text link
    We report a comprehensive density functional theory (DFT) + UU study of the energetics of charged and neutral oxygen defects in both PuO2_{2} and α\alpha-Pu2_{2}O3_{3}, and present a quantitative determination of the equilibrium compositions of reduced PuO2_{2} (PuO2x_{2-x}) as functions of environmental temperature and partial pressure of oxygen, which shows fairly agreement with corresponding high-temperature experiments. Under ambient conditions, the endothermic reduction of PuO2_{2} to α\alpha-Pu2_{2}O3_{3} is found to be facilitated by accompanying volume expansion of PuO2x_{2-x} and the possible migration of O-vacancy, whereas further reduction of α\alpha -Pu2_{2}O3_{3} is predicted to be much more difficult. In contrast to the endothermic oxidation of PuO2_{2},\ the oxidation of α\alpha-Pu2_{2} O3_{3} is a stable exothermic process.Comment: 5 PLA pages, 4 figure

    Thermodynamic systematics of oxides of americium, curium, and neighboring elements

    Get PDF
    Recently-obtained calorimetric data on the sesquioxides and dioxides of americium and curium are summarized. These data are combined with other properties of the actinide elements to elucidate the stability relationships among these oxides and to predict the behavior of neighboring actinide oxides. 45 references, 4 figures, 5 tables

    Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO 2 for radioisotope power systems

    Full text link
    The European Space Agency (ESA) is sponsoring a research programme on the development of americium oxides for radioisotope generators and heater units. Cubic AmO2-(x/2) with an O/Am ratio between 1.65 and 1.75 is a potentially suitable compound for pellet sintering. C-type (Ia-3) Ce1-xNdxO2-(x/2) oxides with 0.5 &lt; x &lt; 0.7 could be used as a surrogate for some Ia-3 AmO2-(x/2). A new Ce1-xNdxO2-(x/2) production process has been investigated where a nominally selected x value of 0.6 was targeted: Ce and Nd nitrates and oxalic acid were added drop-wise into a vessel, where they continuously reacted to create oxalate precipitates. The effect of temperature (25 °C, 60 °C) of the reactants (mixed at 250 revolutions per minute) on oxalate particle shape and size were investigated. Oxalates were calcined at 900 °C to produce oxide particles. Oxalate particle properties were characterised as these are expected to influence oxides particle properties and fuel pellet sintering.</p
    corecore