2,083 research outputs found

    Control of tetrahedral coordination and superconductivity in FeSe0.5Te0.5 thin films

    Full text link
    We demonstrate a close relationship between superconductivity and the dimensions of the Fe-Se(Te) tetrahedron in FeSe0.5Te0.5. This is done by exploiting thin film epitaxy, which provides controlled biaxial stress, both compressive and tensile, to distort the tetrahedron. The Se/Te height within the tetrahedron is found to be of crucial importance to superconductivity, in agreement with the theoretical proposal that (pi,pi) spin fluctuations promote superconductivity in Fe superconductors

    Relationship between Respiratory Load Perception and Perception of Nonrespiratory Sensory Modalities in Subjects with Life-Threatening Asthma

    Get PDF
    Subjects with life-threatening asthma (LTA) have reported decreased sensitivity to inspiratory resistive (R) loads. It is unknown if decreased sensitivity is specific for inspiratory R loads, other types of respiratory loads, or a general deficit affecting sensory modalities. This study hypothesized that impairment is specific to respiratory stimuli. This study tested perceptual sensitivity of LTA, asthmatic (A), and nonasthmatic (NA) subjects to 4 sensory modalities: respiratory, somatosensory, auditory, visual. Perceptual sensitivity was measured with magnitude estimation (ME): respiratory loads ME, determined using inspiratory R and pressure threshold (PT) loads; somatosensory ME, determined using weight ranges of 2–20 kg; auditory ME, determined using graded magnitudes of 1 kHz tones delivered for 3 seconds bilaterally; visual ME, determined using gray-to-white disk intensity gradations on black background. ME for inspiratory R loads lessened for LTA over A and NA subjects. There was no significant difference between the 3 groups in ME for PT inspiratory loads, weight, sound, and visual trials. These results demonstrate that LTA subjects are poor perceivers of inspiratory R loads. This deficit in respiratory perception is specific to inspiratory R loads and is not due to perceptual deficits in other types of inspiratory loads, somatosensory, auditory, or visual sensory modalities

    Flight Hardware Packaging Design for Stringent EMC Radiated Emission Requirements

    Get PDF
    This packaging design approach can help heritage hardware meet a flight project's stringent EMC radiated emissions requirement. The approach requires only minor modifications to a hardware's chassis and mainly concentrates on its connector interfaces. The solution is to raise the surface area where the connector is mounted by a few millimeters using a pedestal, and then wrapping with conductive tape from the cable backshell down to the surface-mounted connector. This design approach has been applied to JPL flight project subsystems. The EMC radiated emissions requirements for flight projects can vary from benign to mission critical. If the project's EMC requirements are stringent, the best approach to meet EMC requirements would be to design an EMC control program for the project early on and implement EMC design techniques starting with the circuit board layout. This is the ideal scenario for hardware that is built from scratch. Implementation of EMC radiated emissions mitigation techniques can mature as the design progresses, with minimal impact to the design cycle. The real challenge exists for hardware that is planned to be flown following a built-to-print approach, in which heritage hardware from a past project with a different set of requirements is expected to perform satisfactorily for a new project. With acceptance of heritage, the design would already be established (circuit board layout and components have already been pre-determined), and hence any radiated emissions mitigation techniques would only be applicable at the packaging level. The key is to take a heritage design with its known radiated emissions spectrum and repackage, or modify its chassis design so that it would have a better chance of meeting the new project s radiated emissions requirements

    High-order harmonic generation in Xe, Kr, and Ar driven by a 2.1-\mu m source: high-order harmonic spectroscopy under macroscopic effects

    Full text link
    We experimentally and numerically study the atomic response and pulse propagation effects of high-order harmonics generated in Xe, Kr, and Ar driven by a 2.1-\mu m infrared femtosecond light source. The light source is an optical parametric chirped-pulse amplifier, and a modified strong-field approximation and 3-dimensional pulse propagation code are used for the numerical simulations. The extended cutoff in the long-wavelength driven high-harmonic generation has revealed the spectral shaping of high-order harmonics due to the atomic structure (or photo-recombination cross-section) and the macroscopic effects, which are the main factors of determining the conversion efficiency besides the driving wavelength. Using precise numerical simulations to determine the macroscopic electron wavepacket, we are able to extract the photo-recombination cross-sections from experimental high-order harmonic spectra in the presence of macroscopic effects. We have experimentally observed that the macroscopic effects shift the observed Cooper minimum of Kr from 80 eV to 60-70 eV and wash out the Cooper minimum of Ar. Measured high-harmonic conversion efficiencies per harmonic near the cutoff are ~10^{-9} for all three gases.Comment: 19 pages, 8 figure

    LNK (SH2B3): paradoxical effects in ovarian cancer.

    Get PDF
    LNK (SH2B3) is an adaptor protein studied extensively in normal and malignant hematopoietic cells. In these cells, it downregulates activated tyrosine kinases at the cell surface resulting in an antiproliferative effect. To date, no studies have examined activities of LNK in solid tumors. In this study, we found by in silico analysis and staining tissue arrays that the levels of LNK expression were elevated in high-grade ovarian cancer. To test the functional importance of this observation, LNK was either overexpressed or silenced in several ovarian cancer cell lines. Remarkably, overexpression of LNK rendered the cells resistant to death induced by either serum starvation or nutrient deprivation, and generated larger tumors using a murine xenograft model. In contrast, silencing of LNK decreased ovarian cancer cell growth in vitro and in vivo. Western blot studies indicated that overexpression of LNK upregulated and extended the transduction of the mitogenic signal, whereas silencing of LNK produced the opposite effects. Furthermore, forced expression of LNK reduced cell size, inhibited cell migration and markedly enhanced cell adhesion. Liquid chromatography-mass spectroscopy identified 14-3-3 as one of the LNK-binding partners. Our results suggest that in contrast to the findings in hematologic malignancies, the adaptor protein LNK acts as a positive signal transduction modulator in ovarian cancers

    Pt Magnetic Polarization on Y\u3csub\u3e3\u3c/sub\u3eFe\u3csub\u3e5\u3c/sub\u3eO\u3csub\u3e12\u3c/sub\u3e and Magnetotransport Characteristics

    Get PDF
    Thin Pt films on an yttrium iron garnet (YIG=Y3Fe5O12) show ferromagneticlike transport properties, which may impact the functionality of Pt in spin current detection, but do not provide direct quantitative information on the Pt magnetization. We report magnetic x-ray magnetic circular dichroism measurements of YIG/Pt(1.5  nm) showing an average Pt moment of 0.054  μB at 300 K and 0.076  μB at 20 K. This observation indicates strong proximity effects and induced magnetic ordering in Pt on magnetic insulators and their contribution to the spin-related measurements should not be neglected. The transport characteristics also suggest considerable modifications in the Pt electronic structure due to magnetic ordering
    • …
    corecore