8 research outputs found

    Diagnosing mucopolysaccharidosis IVA

    Get PDF
    Mucopolysaccharidosis IVA (MPS IVA; Morquio A syndrome) is an autosomal recessive lysosomal storage disorder resulting from a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) activity. Diagnosis can be challenging and requires agreement of clinical, radiographic, and laboratory findings. A group of biochemical genetics laboratory directors and clinicians involved in the diagnosis of MPS IVA, convened by BioMarin Pharmaceutical Inc., met to develop recommendations for diagnosis. The following conclusions were reached. Due to the wide variation and subtleties of radiographic findings, imaging of multiple body regions is recommended. Urinary glycosaminoglycan analysis is particularly problematic for MPS IVA and it is strongly recommended to proceed to enzyme activity testing even if urine appears normal when there is clinical suspicion of MPS IVA. Enzyme activity testing of GALNS is essential in diagnosing MPS IVA. Additional analyses to confirm sample integrity and rule out MPS IVB, multiple sulfatase deficiency, and mucolipidoses types II/III are critical as part of enzyme activity testing. Leukocytes or cultured dermal fibroblasts are strongly recommended for enzyme activity testing to confirm screening results. Molecular testing may also be used to confirm the diagnosis in many patients. However, two known or probable causative mutations may not be identified in all cases of MPS IVA. A diagnostic testing algorithm is presented which attempts to streamline this complex testing process

    Mudd’s disease (MAT I/III deficiency): a survey of data for MAT1A homozygotes and compound heterozygotes

    Full text link

    Long-term effects of medical management on growth and weight in individuals with urea cycle disorders

    Get PDF
    Low protein diet and sodium or glycerol phenylbutyrate, two pillars of recommended long-term therapy of individuals with urea cycle disorders (UCDs), involve the risk of iatrogenic growth failure. Limited evidence-based studies hamper our knowledge on the long-term effects of the proposed medical management in individuals with UCDs. We studied the impact of medical management on growth and weight development in 307 individuals longitudinally followed by the Urea Cycle Disorders Consortium (UCDC) and the European registry and network for Intoxication type Metabolic Diseases (E-IMD). Intrauterine growth of all investigated UCDs and postnatal linear growth of asymptomatic individuals remained unaffected. Symptomatic individuals were at risk of progressive growth retardation independent from the underlying disease and the degree of natural protein restriction. Growth impairment was determined by disease severity and associated with reduced or borderline plasma branched-chain amino acid (BCAA) concentrations. Liver transplantation appeared to have a beneficial effect on growth. Weight development remained unaffected both in asymptomatic and symptomatic individuals. Progressive growth impairment depends on disease severity and plasma BCAA concentrations, but cannot be predicted by the amount of natural protein intake alone. Future clinical trials are necessary to evaluate whether supplementation with BCAAs might improve growth in UCDs

    Enzymatic activity of methionine adenosyltransferase variants identified in patients with persistent hypermethioninemia

    No full text
    Methionine adenosyltransferases (MAT's) are central enzymes in living organisms that have been conserved with a high degree of homology among species. In the liver, MAT I and III, tetrameric and dimeric isoforms of the same catalytic subunit encoded by the gene MAT1A, account for the predominant portion of total body synthesis of S-adenosylmethionine (SAM), a versatile sulfonium ion-containing molecule involved in a variety of vital metabolic reactions and in the control of hepatocyte proliferation and differentiation. During the past 15years 28 MAT1A mutations have been described in patients with elevated plasma methionines, total homocysteines at most only moderately elevated, and normal levels of tyrosine and other aminoacids. In this study we describe functional analyses that determine the MAT and tripolyphosphatase (PPPase) activities of 18 MAT1A variants, six of them novel, and none of them previously assayed for activity. With the exception of G69S and Y92H, all recombinant proteins showed impairment (usually severe) of MAT activity. Tripolyphosphate (PPPi) hydrolysis was decreased only in some mutant proteins but, when it was decreased MAT activity was always also impaired

    Abstracts from the 8th International Congress of the Asia Pacific Society of Infection Control (APSIC)

    Get PDF

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    A collaboration among 157 newborn screening programs in 47 countries has lead to the creation of a database of 705,333 discrete analyte concentrations from 11,462 cases affected with 57 metabolic disorders, and from 631 heterozygotes for 12 conditions. This evidence was first applied to establish disease ranges for amino acids and acylcarnitines, and clinically validate 114 cutoff target ranges. Objective: To improve quality and performance with an evidence-based approach, multivariate pattern recognition software has been developed to aid in the interpretation of complex analyte profiles. The software generates tools that convert multiple clinically significant results into a single numerical score based on overlap between normal and disease ranges, penetration within the disease range, differences between specific conditions, and weighted correction factors. Design: Eighty-five on-line tools target either a single condition or the differential diagnosis between two or more conditions. Scores are expressed as a numerical value and as the percentile rank among all cases with the condition chosen as primary target, and are compared to interpretation guidelines. Tools are updated automatically after any new data submission (2009- 2011: 5.2 new cases added per day on average). Main outcome measures: Retrospective evaluation of past cases suggest that these tools could have avoided at least half of 277 false positive outcomes caused by carrier status for fatty acid oxidation disorders, and could have prevented 88% of false negative events caused by cutoff 7 values set inappropriately. In Minnesota, their prospective application has been a major contributing factor to the sustained achievement of a false positive rate below 0.1% and a positive predictive value above 60%. Conclusions: Application of this computational approach to raw data could make cutoff values for single analytes effectively obsolete. This paradigm is not limited to newborn screening and is applicable to the interpretation of diverse multi-analyte profiles utilized in laboratory medicine. Abstract wor
    corecore