266 research outputs found

    Field and chirality effects on electrochemical charge transfer rates: Spin dependent electrochemistry

    Get PDF
    This work examines whether electrochemical redox reactions are sensitive to the electron spin orientation by examining the effects of magnetic field and molecular chirality on the charge transfer process. The working electrode is either a ferromagnetic nickel film or a nickel film that is coated with an ultrathin (5\u201330 nm) gold overlayer. The electrode is coated with a self-assembled monolayer that immobilizes a redox couple containing chiral molecular units, either the redox active dye toluidine blue O with a chiral cysteine linking unit or cytochrome c. By varying the direction of magnetization of the nickel, toward or away from the adsorbed layer, we demonstrate that the electrochemical current depends on the orientation of the electrons\u2019 spin. In the case of cytochrome c, the spin selectivity of the reduction is extremely high, namely, the reduction occurs mainly with electrons having their spin-aligned antiparallel to their velocity

    Understanding resonant charge transport through weakly coupled single-molecule junctions

    Get PDF
    Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and it is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of the non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model the overall charge transport as a sequence of non-adiabatic electron transfers, the rates of which depend on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to the interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s

    Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Get PDF
    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution

    Understanding resonant charge transport through weakly coupled single-molecule junctions

    Get PDF
    Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and it is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of the non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model the overall charge transport as a sequence of non-adiabatic electron transfers, the rates of which depend on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to the interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s
    corecore