145 research outputs found

    A Brief Review of Past INL Work Assessing Radionuclide Content in TMI-2 Melted Fuel Debris: The Use of 144Ce as a Surrogate for Pu Accountancy

    Full text link
    This report serves as a literature review of prior work performed at Idaho National Laboratory, and its predecessor organizations Idaho National Engineering Laboratory (INEL) and Idaho National Engineering and Environmental Laboratory (INEEL), studying radionuclide partitioning within the melted fuel debris of the reactor of the Three Mile Island 2 (TMI-2) nuclear power plant. The purpose of this review is to document prior published work that provides supporting evidence of the utility of using 144Ce as a surrogate for plutonium within melted fuel debris. When the TMI-2 accident occurred no quantitative nondestructive analysis (NDA) techniques existed that could assay plutonium in the unconventional wastes from the reactor. However, unpublished work performed at INL by D. W. Akers in the late 1980s through the 1990s demonstrated that passive gamma-ray spectrometry of 144Ce could potentially be used to develop a semi-quantitative correlation for estimating plutonium content in these materials. The fate and transport of radioisotopes in fuel from different regions of the core, including uranium, fission products, and actinides, appear to be well characterized based on the maximum temperature reached by fuel in different parts of the core and the melting point, boiling point, and volatility of those radioisotopes. Also, the chemical interactions between fuel, fuel cladding, control elements, and core structural components appears to have played a large role in determining when and how fuel relocation occurred in the core; perhaps the most important of these reaction appears to be related to the formation of mixed-material alloys, eutectics, in the fuel cladding. Because of its high melting point, low volatility, and similar chemical behavior to plutonium, the element cerium appears to have behaved similarly to plutonium during the evolution of the TMI-2 accident. Anecdotal evidence extrapolated from open-source literature strengthens this logical feasibility for using cerium, which is rather easy to analyze using passive nondestructive analysis gamma-ray spectrometry, as a surrogate for plutonium in the final analysis of TMI-2 melted fuel debris. The generation of this report is motivated by the need to perform nuclear material accountancy measurements on the melted fuel debris that will be excavated from the damaged nuclear reactors at the Fukushima Daiichi nuclear power plant in Japan, which were destroyed by the Tohoku earthquake and tsunami on March 11, 2011. Lessons may be taken from prior U.S. work related to the study of the TMI-2 core debris to support the development of new assay methods for use at Fukushima Daiichi. While significant differences exist between the two reactor systems (pressurized water reactor (TMI-2) versus boiling water reactor (FD), fresh water post-accident cooing (TMI-2) versus salt water (FD), maintained containment (TMI-2) versus loss of containment (FD)) there remain sufficient similarities to motivate these comparisons

    Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Get PDF
    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620)

    MPACT Fast Neutron Multiplicity System Design Concepts

    Get PDF
    This report documents work performed by Idaho National Laboratory and the University of Michigan in fiscal year (FY) 2012 to examine design parameters related to the use of fast-neutron multiplicity counting for assaying plutonium for materials protection, accountancy, and control purposes. This project seeks to develop a new type of neutron-measurement-based plutonium assay instrument suited for assaying advanced fuel cycle materials. Some current-concept advanced fuels contain high concentrations of plutonium; some of these concept fuels also contain other fissionable actinides besides plutonium. Because of these attributes the neutron emission rates of these new fuels may be much higher, and more difficult to interpret, than measurements made of plutonium-only materials. Fast neutron multiplicity analysis is one approach for assaying these advanced nuclear fuels. Studies have been performed to assess the conceptual performance capabilities of a fast-neutron multiplicity counter for assaying plutonium. Comparisons have been made to evaluate the potential improvements and benefits of fast-neutron multiplicity analyses versus traditional thermal-neutron counting systems. Fast-neutron instrumentation, using for example an array of liquid scintillators such as EJ-309, have the potential to either a) significantly reduce assay measurement times versus traditional approaches, for comparable measurement precision values, b) significantly improve assay precision values, for measurement durations comparable to current-generation technology, or c) moderating improve both measurement precision and measurement durations versus current-generation technology. Using the MCNPX-PoliMi Monte Carlo simulation code, studies have been performed to assess the doubles-detection efficiency for a variety of counter layouts of cylindrical liquid scintillator detector cells over one, two, and three rows. Ignoring other considerations, the best detector design is the one with the most detecting volume. However, operational limitations guide a) the maximum acceptable size of each detector cell (due to PSD performance and maximum-acceptable per-channel data throughput rates, limited by pulse pile-up and the processing rate of the electronics components of the system) and b) the affordability of a system due to the number of total channels of data to be collected and processed. As a first estimate, it appears that a system comprised of two rows of detectors 5" Ø ? 3" would yield a working prototype system with excellent performance capabilities for assaying Pu-containing items and capable of handling high signal rates likely when measuring items with Pu and other actinides. However, it is still likely that gamma-ray shielding will be needed to reduce the total signal rate in the detectors. As a first step prior to working with these larger-sized detectors, it may be practical to perform scoping studies using small detectors, such as already-on-hand 3" Ø ? 3" detectors

    Photophysics of the electronic states S0 and S1 for the coplanar molecular structures of the α,ω-diphenylpolyenes DPH and DPO

    Full text link
    Spectroscopy of the monoclinic and orthorhombic crystalline forms of all-trans-diphenylhexatriene (DPH) and all-trans-diphenyloctatetraene (DPO) show absorption and emission bands that do not generate the widely known Stokes shift of the polyene compounds, discovered by Hausser et al. in 1953 and repeatedly studied over the last 60 years. It can be concluded from our study that the crystallization system, whether in a monoclinic or orthorhombic system, does not significantly influence the photophysics of DPH and DPO in the crystal phas

    Wide-Angle Seismic Imaging of Two Modes of Crustal Accretion in Mature Atlantic Ocean Crust

    Get PDF
    We present a high‐resolution 2‐D P‐wave velocity model from a 225‐km‐long active seismic profile, collected over ~60–75 Ma central Atlantic crust. The profile crosses five ridge segments separated by a transform and three nontransform offsets. All ridge discontinuities share similar primary characteristics, independent of the offset. We identify two types of crustal segment. The first displays a classic two‐layer velocity structure with a high gradient Layer 2 (~0.9 s−1^{−1}) above a lower gradient Layer 3 (0.2 s−1^{−1}). Here, PmP coincides with the 7.5 km s−1^{−1} contour, and velocity increases to >7.8 km s−1^{−1} within 1 km below. We interpret these segments as magmatically robust, with PmP representing a petrological boundary between crust and mantle. The second has a reduced contrast in velocity gradient between the upper and lower crust and PmP shallower than the 7.5 km s−1^{−1} contour. We interpret these segments as tectonically dominated, with PmP representing a serpentinized (alteration) front. While velocity‐depth profiles fit within previous envelopes for slow‐spreading crust, our results suggest that such generalizations give a misleading impression of uniformity. We estimate that the two crustal styles are present in equal proportions on the floor of the Atlantic. Within two tectonically dominated segments, we make the first wide‐angle seismic identifications of buried oceanic core complexes in mature (>20 Ma) Atlantic Ocean crust. They have a ~20‐km‐wide “domal” morphology with shallow basement and increased upper crustal velocities. We interpret their midcrustal seismic velocity inversions as alteration and rock‐type assemblage contrasts across crustal‐scale detachment faults

    Nothing New in the (North) East? Interpreting the Rhetoric and Reality of Japanese Corporate Governance

    Get PDF
    Japan finally seems to be pulling itself out of its lost decade (and a half) of economic stagnation. Some grudgingly or triumphantly attribute this to micro-economic reforms, freeing up arthritic markets, although there is also evidence that macro-economic policy failures have been a major cause of poor performance since the 1990s. Many point to overlapping transformations in corporate governance, broadly defined to cover relationships among managers and employees as well as between firms and outside shareholders, creditors, and other stakeholders. These relationships are in flux, with moves arguably favouring shareholders and more market-driven control mechanisms. It has certainly been a found decade for law reform in Japan, particularly in corporate law, with a plethora of legislative amendments commencing around 1993 and culminating in the enactment of a consolidated Company Law in 2005. This modernisation project, particularly since 2001, is reportedly aimed at (i) securing better corporate governance, (ii) bringing the law into line with a highly-developed information society, (iii) liberalising fundraising measures, (iv) bringing corporate law into line with the internationalization of corporate activity, and (v) modernizing terms and consolidating corporate law. Because the suite of revisions has moved away from strict mandatory rules set out originally in Japan\u27s Commercial Code of 1899, modeled primarily on German law, another growing perception is that Japanese corporate law and practice is or will soon be converging significantly on US models. However, assessments remain divided as to whether these moves in corporate governance and capitalism more generally in Japan amount to a new paradigm or regime shift . Focusing primarily on quite influential commentary in English, Part I of this paper outlines two pairs of views. It concludes that the most plausible assessment is of significant but gradual transformation towards a more market-driven approach, evident also in other advanced political economies. Drawing more generally from these often virulently divided views, Part II sets out five ways forward through the proliferating literature and source material on corporate governance in Japan. Particular care must be taken in: (i) selecting the temporal timeframe, (ii) selecting countries to compare, (iii) balancing black-letter law and broader socio-economic context, (iv) reflecting on and disclosing normative preferences, and (v) giving weight to processes as well as outcomes, when assessing change in Japan - and any other country\u27s governance system. Part III ends with a call for further research particularly on law- and policy-producing processes, rather than mainly outcomes. It also outlines the usefulness of this analytical framework for analysing the broader field of Corporate Social Responsibility, now emerging as the next major area of debate and transformation in Japan - as elsewhere
    • 

    corecore