7 research outputs found
Données de base des ions atomiques et moléculaires de l'hélium et de l'argon pour l'optimisation des jets de plasmas froids utilisés dans le domaine biomédical
L'utilisation des jets de plasmas froids Ă pression atmosphĂ©rique (PA) pour des applications biomĂ©dicales est un sujet de recherche relativement nouveau, et en plein essor. De nombreuses espĂšces actives (photons, radicaux, particules chargĂ©es, champ Ă©lectrique etc.) sont produites par ces dispositifs et sont Ă l'origine des effets biologiques observĂ©s. Un des dĂ©fis principaux est alors de pouvoir en contrĂŽler la production. Pour cela, des modĂšles physico-chimiques ont Ă©tĂ© dĂ©veloppĂ©s mais requiĂšrent, en donnĂ©es d'entrĂ©e, les coefficients de transport, souvent indisponibles dans la littĂ©rature, des ions affectant la cinĂ©tique du jet de plasma. Ce travail de thĂšse se concentre sur les jets de plasma Ă base d'hĂ©lium ou d'argon. Ainsi, les coefficients de transport des ions He+ et He2+ ainsi que Ar+ et Ar2+ ont Ă©tĂ© calculĂ©s dans leur gaz parent. La nouveautĂ© concerne les ions molĂ©culaires (He2+ et Ar2+), dĂ©terminant dans la dynamique des jets car trĂšs majoritairement prĂ©sents Ă la PA. Les coefficients de transport sont intimement liĂ©s aux sections efficaces de collision et donc aux courbes de potentiel d'interaction ion-neutre. Pour le systĂšme d'interaction He+/He, une mĂ©thode quantique 1D sans approximation a Ă©tĂ© utilisĂ©e pour le calcul des sections efficaces de collision puis, une simulation Monte Carlo a permis d'obtenir les coefficients de transport dans les barres d'erreur expĂ©rimentale. Par contre, pour les ions molĂ©culaires He2+, deux mĂ©thodes de calcul ont Ă©tĂ© utilisĂ©es : une mĂ©thode quantique 1D et une mĂ©thode, qualifiĂ©e d'hybride, associant formulations classique et quantique. Un compromis entre les deux mĂ©thodes a finalement permis d'obtenir des mobilitĂ©s rĂ©duites avec un Ă©cart relatif moyen de 5% par rapport aux mesures, puis de les Ă©tendre aux champs Ă©levĂ©s. Les coefficients de diffusion et les constantes de rĂ©action, non-disponibles dans la littĂ©rature, ont Ă©galement Ă©tĂ© calculĂ©s. Pour les jets de plasmas Ă base d'argon, les coefficients de transport des ions atomiques Ă l'Ă©tat fondamental 2P3/2 et mĂ©tastable 2P1/2 ont Ă©tĂ© calculĂ©s, Ă l'aide des sections efficaces quantiques, jusqu'Ă 1500 Td (1 Td = 10-17 V.cmÂČ) avec un Ă©cart relatif moyen infĂ©rieur Ă 0.2% par rapport aux mesures. Enfin, pour les ions Ar2+, la mĂ©thode hybride a permis d'obtenir les sections efficaces de collision menant Ă des mobilitĂ©s rĂ©duites avec un Ă©cart relatif moyen de 2% par rapport aux mesures et de calculer les coefficients de diffusion et constantes de rĂ©action.The use of cold plasma jets at atmospheric pressure (AP) for biomedical applications is a hot research topic. Such devices produce many active species (photons, radicals, charged particles, electric field, etc.) very useful for biomedical applications. The challenge for the plasma physics community is to tune such plasma devices to abundantly or selectively produce actives species beforehand identified for their biological effects. To reach this goal, physicochemical models have been developed but require, in input data, the transport coefficients (not always available in the literature) of ions affecting the kinetics of the plasma jet. In this thesis work we are interested in helium or argon plasma jets. Thus, transport coefficients of He+ and He2+ ions as Ar+ and Ar2+ ions have been calculated in their parent gas. The originality of the work concerns the molecular ions (He2+ and Ar2+) which play the main role in the plasma jet dynamics since they are overwhelmingly present at the AP. The transport coefficients are closely related to the collision cross sections and then to the ion-neutral interaction potential curves. For the He+/He interaction system, a 1D quantum method without approximation has been used for the collision cross section calculation and an optimized Monte Carlo code allowed us to obtained the transport coefficients in the experimental error bars. On the other side, for the molecular ions He2+, two calculation methods have been considered: a 1D quantum method and a hybrid method mixing classical and quantum formulations. A compromise between these two methods finally allowed us to obtain reduced mobilities with a mean relative deviation from experiments of 5% and to expand the latter to higher electric fields. Diffusion coefficients and reaction rates, not available in the literature, have been also calculated. For the argon plasma jet, the transport coefficients for atomic ions in the ground 2P3/2 state and metastable 2P1/2 state have been obtained, using quantum collision cross sections, up to 1500 Td (1 Td = 10-17 V.cmÂČ) with a mean relative deviation from measurements below 0.2%. Finally, for Ar2+ ions, the hybrid method allowed us to obtain reduced mobilities with a mean relative deviation of 2% from experiments and to calculate the diffusion coefficients and reaction rates not available in the literature
Characterization of Spo11-dependent and independent phospho-H2AX foci during meiotic prophase I in the male mouse
International audienc
First principles transport coefficients and reaction rates of Ar2+ ions in argon for cold plasma jet modeling
International audienc
Test areas and targeting in the Hull Project
NRC publication: Ye
Ion collision cross sections and transport coefficients extended to intermediate energies and reduced electric fields for He-2(+) ions colliding with He
his work is devoted to the calculation of transport coefficients for He2+ ions in gaseous He at intermediate reduced electric fields. These swarm data are of great interest for a better understanding of the mechanisms of formation and propagation of the fast plasma bullets or ionization waves observed in dielectric barrier plasma jet devices. For transport data, the collision cross sections required are determined from several theoretical methods based on quantum, semiclassical, and hybrid approaches and a diatomics-in-molecules model for the potential energy surfaces of He3+. The corresponding collision cross sections are then used in an optimized Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric fields extending over the experimental range. Calculated transport coefficients are compared with available experimental data at low electric fields. Moreover, an extrapolation method is used in order to determine the reduced mobility for stronger fields. A critical discussion has been performed on the pertinence and the reliability of these different methods of determination of collision cross sections needed for the calculation of ion transport data. Such ion data will be used in electrohydrodynamic and chemical kinetic models of the low-temperature plasma jet to quantify and to tune the active species production for a better use in biomedical applications.Web of Science884art. no. 04310
Reducing the number of CTs performed to monitor personalized dosimetry during peptide receptor radionuclide therapy (PRRT)
Abstract Background Peptide receptor radionuclide therapy (PRRT) with [177Lu]-DOTA-TATE is an effective treatment of neuroendocrine tumors (NETs). After each cycle of treatment, patient dosimetry evaluates the radiation dose to the risk organs, kidneys, and bone marrow, the most radiosensitive tissues. Absorbed doses are calculated from the radioactivity in the blood and from single photon emission computed tomography (SPECT) images corrected by computed tomography (CT) acquired after each course of treatment. The aim of this work is to assess whether the dosimetry along all treatment cycles can be calculated using a single CT. We hypothesize that the absorbed doses to the risk organs calculated with a single CT will be accurate enough to correctly manage the patients, i.e., whether or not to continue PRRT. Twenty-four patients diagnosed with metastatic NETs undergoing PRRT with [177Lu]-DOTA-TATE were retrospectively included in this study. We compared radiation doses to the kidneys and bone marrow using two protocols. In the âclassicalâ one, dosimetry is calculated based on a SPECT and a CT after each treatment cycle. In the new protocol, dosimetry is calculated based on a SPECT study after each cycle but with the first acquired CT for all cycles. Results The decision whether or not to stop PRRT because of unsafe absorbed dose to the risk organs would have been the same had the classical or the new protocol been used. The agreement between the cumulative doses to the kidneys and bone marrow obtained from the two protocols was excellent with Pearsonâs correlation coefficients r =â0.95 and r =â0.99 (P <â0.0001) and mean relative differences of 5.30â±â6.20% and 0.48â±â4.88%, respectively. Conclusions Dosimetry calculations for a given patient can be done using a single CT registered to serial SPECTs. This new protocol reduces the need for a hybrid camera in the follow-up of patients receiving [177Lu]-DOTA-TATE