170 research outputs found

    Near-field scanning optical microscopy using polymethylmethacrylate optical fiber probes

    Get PDF
    We report the first use of polymethylmethacrylate (PMMA) optical fiber-made probes for scanning near-field optical microscopy (SNOM). The sharp tips were prepared by chemical etching of the fibers in ethyl acetate, and the probes were prepared by proper gluing of sharpened fibers onto the tuning fork in the conditions of the double resonance (working frequency of a tuning fork coincides with the resonance frequency of dithering of the free-standing part of the fiber) reported earlier for the case of glass fibers. Quality factors of the probes in the range 2000–6000 were obtained, which enables the realization of an excellent topographical resolution including state-of-art imaging of single DNA molecules. Near-field optical performance of the microscope is illustrated by the Photon Scanning Tunneling Microscope images of fluorescent beads with a diameter of 100 nm. The preparation of these plastic fiber probes proved to be easy, needs no hazardous material and/or procedures, and typical lifetime of a probe essentially exceeds that characteristic for the glass fiber probe

    The Fringe Detection Laser Metrology for the GRAVITY Interferometer at the VLTI

    Full text link
    Interferometric measurements of optical path length differences of stars over large baselines can deliver extremely accurate astrometric data. The interferometer GRAVITY will simultaneously measure two objects in the field of view of the Very Large Telescope Interferometer (VLTI) of the European Southern Observatory (ESO) and determine their angular separation to a precision of 10 micro arcseconds in only 5 minutes. To perform the astrometric measurement with such a high accuracy, the differential path length through the VLTI and the instrument has to be measured (and tracked since Earth's rotation will permanently change it) by a laser metrology to an even higher level of accuracy (corresponding to 1 nm in 3 minutes). Usually, heterodyne differential path techniques are used for nanometer precision measurements, but with these methods it is difficult to track the full beam size and to follow the light path up to the primary mirror of the telescope. Here, we present the preliminary design of a differential path metrology system, developed within the GRAVITY project. It measures the instrumental differential path over the full pupil size and up to the entrance pupil location. The differential phase is measured by detecting the laser fringe pattern both on the telescopes' secondary mirrors as well as after reflection at the primary mirror. Based on our proposed design we evaluate the phase measurement accuracy based on a full budget of possible statistical and systematic errors. We show that this metrology design fulfills the high precision requirement of GRAVITY.Comment: Proc. SPIE in pres

    Lattice-shifted nematic quantum critical point in FeSe1−xSxFeSe_{1−x}S_{x}

    Get PDF
    We report the evolution of nematic fluctuations in FeSe1−xSxFeSe_{1−x}S_{x} single crystals as a function of Sulfur content x across the nematic quantum critical point (QCP) xcx_{c} ~ 0.17 via Raman scattering. The Raman spectra in the B1gB_{1g} nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie–Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling, which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund’s metals, with both itinerant carriers and local moments contributing to the nematic susceptibility

    Rich Polymorphism of a Metal-Organic Framework in Pressure-Temperature Space.

    Get PDF
    We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal-organic framework ZIF-4, Zn(imidazolate)2, at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure-temperature phase diagram reveals four, previously unknown, high-pressure-high-temperature ZIF phases. The crystal structures of two new phases-ZIF-4-cp-II and ZIF-hPT-II-were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF- zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)2 and Hg(Imidazolate)2 phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure-temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal-organic systems using the combined application of pressure and temperature

    Lattice-Shifted Nematic Quantum Critical Point in FeSe1−x_{1-x}Sx_x

    Get PDF
    We report the evolution of nematic fluctuations in FeSe1−x_{1-x}Sx_x single crystals as a function of Sulfur content xx across the nematic quantum critical point (QCP) xc∌x_c\sim 0.17 via Raman scattering. The Raman spectra in the B1gB_{1g} nematic channel consist of two components, but only the low energy one displays clear fingerprints of critical behavior and is attributed to itinerant carriers. Curie-Weiss analysis of the associated nematic susceptibility indicates a substantial effect of nemato-elastic coupling which shifts the location of the nematic QCP. We argue that this lattice-induced shift likely explains the absence of any enhancement of the superconducting transition temperature at the QCP. The presence of two components in the nematic fluctuations spectrum is attributed to the dual aspect of electronic degrees of freedom in Hund's metals, with both itinerant carriers and local moments contributing to the nematic susceptibility.Comment: 10 pages, 5 figure

    Proteomics and Posttranslational Proteomics of Seed Dormancy and Germination

    Get PDF
    The seed is the dispersal unit of plants and must survive the vagaries of the environment. It is the object of intense genetic and genomic studies because processes related to seed quality affect crop yield and the seed itself provides food for humans and animals. Presently, the general aim of postgenomics analyses is to understand the complex biochemical and molecular processes underlying seed quality, longevity, dormancy, and vigor. Due to advances in functional genomics, the recent past years have seen a tremendous progress in our understanding of several aspects of seed development and germination. Here, we describe the proteomics protocols (from protein extraction to mass spectrometry) that can be used to investigate several aspects of seed physiology, including germination and its hormonal regulation, dormancy release, and seed longevity. These techniques can be applied to the study of both model plants (such as Arabidopsis) and crops

    The role of recent admixture in forming the contemporary West Eurasian genomic landscape

    Get PDF
    Over the past few years, studies of DNA isolated from human fossils and archaeological remains have generated considerable novel insight into the history of our species. Several landmark papers have described the genomes of ancient humans across West Eurasia, demonstrating the presence of large-scale, dynamic population movements over the last 10,000 years, such that ancestry across present-day populations is likely to be a mixture of several ancient groups [1-7]. While these efforts are bringing the details of West Eurasian prehistory into increasing focus, studies aimed at understanding the processes behind the generation of the current West Eurasian genetic landscape have been limited by the number of populations sampled or have been either too regional or global in their outlook [8-11]. Here, using recently described haplotype-based techniques [11], we present the results of a systematic survey of recent admixture history across Western Eurasia and show that admixture is a universal property across almost all groups. Admixture in all regions except North Western Europe involved the influx of genetic material from outside of West Eurasia, which we date to specific time periods. Within Northern, Western, and Central Europe, admixture tended to occur between local groups during the period 300 to 1200 CE. Comparisons of the genetic profiles of West Eurasians before and after admixture show that population movements within the last 1,500 years are likely to have maintained differentiation among groups. Our analysis provides a timeline of the gene flow events that have generated the contemporary genetic landscape of West Eurasia

    Research of the origin of a particular Tunisian group using a physical marker and Alu insertion polymorphisms

    Get PDF
    The aim of this study was to show how, in some particular circumstances, a physical marker can be used along with molecular markers in the research of an ancient people movement. A set of five Alu insertions was analysed in 42 subjects from a particular Tunisian group (El Hamma) that has, unlike most of the Tunisian population, a very dark skin, similar to that of sub-Saharans, and in 114 Tunisian subjects (Gabes sample) from the same governorate, but outside the group. Our results showed that the El Hamma group is genetically midway between sub-Saharan populations and North Africans, whereas the Gabes sample is clustered among North Africans. In addition, The A25 Alu insertion, considered characteristic to sub-Saharan Africans, was present in the El Hamma group at a relatively high frequency. This frequency was similar to that found in sub-Saharans from Nigeria, but significantly different from those found in the Gabes sample and in other North African populations. Our molecular results, consistent with the skin color status, suggest a sub-Saharan origin of this particular Tunisian group
    • 

    corecore