180 research outputs found

    Continental degassing of helium in an active tectonic setting (northern Italy): the role of seismicity

    Get PDF
    In order to investigate the variability of helium degassing in continental regions, its release from rocks and emission into the atmosphere, here we studied the degassing of volatiles in a seismically active region of northern Italy (MwMAX = 6) at the Nirano-Regnano mud volcanic system. The emitted gases in the study area are CH4–dominated and it is the carrier for helium (He) transfer through the crust. Carbon and He isotopes unequivocally indicate that crustal-derived fluids dominate these systems. An high-resolution 3-dimensional reconstruction of the gas reservoirs feeding the observed gas emissions at the surface permits to estimate the amount of He stored in the natural reservoirs. Our study demonstrated that the in-situ production of 4He in the crust and a long-lasting diffusion through the crust are not the main processes that rule the He degassing in the region. Furthermore, we demonstrated that micro-fracturation due to the field of stress that generates the local seismicity increases the release of He from the rocks and can sustain the excess of He in the natural reservoirs respect to the steady-state diffusive degassing. These results prove that (1) the transport of volatiles through the crust can be episodic as function of rock deformation and seismicity and (2) He can be used to highlight changes in the stress field and related earthquakes

    Hard - X-rays selected Active Galactic Nuclei. I. A radio view at high-frequencies

    Full text link
    A thorough study of radio emission in Active Galactic Nuclei (AGN) is of fundamental importance to understand the physical mechanisms responsible for the emission and the interplay between accretion and ejection processes. High frequency radio observations can target the nuclear contribution of smaller emitting regions and are less affected by absorption. We present JVLA 22 and 45 GHz observations of 16 nearby (0.003≤\lez≤\le0.3) hard - X-rays selected AGN at the (sub)-kpc scale with tens uJy beam−1^{-1} sensitivity. We detected 15/16 sources, with flux densities ranging from hundreds uJy beam−1^{-1} to tens Jy (specific luminosities from ∼\sim1020^{20} to ∼\sim1025 W Hz−1^{25}\,W\,Hz^{-1} at 22 GHz). All detected sources host a compact core, with 8 being core-dominated at either frequencies, the others exhibiting also extended structures. Spectral indices range from steep to flat/inverted. We interpret this evidence as either due to a core+jet system (6/15), a core accompanied by surrounding star formation (1/15), to a jet oriented close to the line of sight (3/15), to emission from a corona or the base of a jet (1/15), although there might be degeneracies between different processes. Four sources require more data to shed light on their nature. We conclude that, at these frequencies, extended, optically-thin components are present together with the flat-spectrum core. The LR/LX∼10−5{L_R}/{L_X}\sim10^{-5} relation is roughly followed, indicating a possible contribution to radio emission from a hot corona. A weakly significant correlation between radio core (22 and 45 GHz) and X-rays luminosities is discussed in the light of an accretion-ejection framework.Comment: Accepted for publication on MNRA

    From 3D to 4D passive seismic tomography: The sub-surface structure imaging of the Val d’Agri region, southern Italy

    Get PDF
    Local earthquakes (passive seismic) tomography (LET) is a well established tool for the imaging of the sub-surface structure. Alternative to active seismics, the main advantages of using natural sources are the better sounding in deeper portions of the upper crust, the relatively low cost, and the direct availability of S-waves. The main drawback is the achievable model resolution, which is limited by the density of the seismic network and the distribution of elastic sources, rather than the elastic wave frequency. Recently, 4D variations (in space and time) of velocity anomalies have been recognized in active volcanoes (Patanè et al., 2006) and normal faulting systems and ascribed to the medium response to transient geological processes, like dyke intrusions or fluid pressure increase on fault planes. In this paper we show how LET contributes to the imaging of the upper crust in a very attractive region like the Val d’Agri in southern Italy, which hosts both significant oil fields and seismogenic structures. We show that LET allows to improve the definition of the crust structure, at depths larger than those sampled by conventional seismic profiles, and detect the space-time dependency of elastic properties in response to local variations of fluid pressur

    Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L'Aquila (central Italy) case study

    Get PDF
    We studied the anatomy of the fault system where the 2009 L'Aquila earthquake (M_W 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L'Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L'Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth

    Analysis and interpretation of the impact of missense variants in cancer

    Get PDF
    Large scale genome sequencing allowed the identification of a massive number of genetic variations, whose impact on human health is still unknown. In this review we analyze, by an in silico-based strategy, the impact of missense variants on cancer-related genes, whose effect on protein stability and function was experimentally determined. We collected a set of 164 variants from 11 proteins to analyze the impact of missense mutations at structural and functional levels, and to assess the performance of state-of-the-art methods (FoldX and Meta-SNP) for predicting protein stability change and pathogenicity. The result of our analysis shows that a combination of experimental data on protein stability and in silico pathogenicity predictions allowed the identification of a subset of variants with a high probability of having a deleterious phenotypic effect, as confirmed by the significant enrichment of the subset in variants annotated in the COSMIC database as putative cancer-driving variants. Our analysis suggests that the integration of experimental and computational approaches may contribute to evaluate the risk for complex disorders and develop more effective treatment strategie

    Radiography of a normal fault system by 64,000 high-precision earthquake locations: The 2009 L’Aquila (central Italy) case study

    Get PDF
    We studied the anatomy of the fault system where the 2009 L’Aquila earthquake (MW 6.1) nucleated by means of ~64 k high-precision earthquake locations spanning 1 year. Data were analyzed by combining an automatic picking procedure for P and S waves, together with cross-correlation and double-difference location methods reaching a completeness magnitude for the catalogue equal to 0.7 including 425 clusters of similar earthquakes. The fault system is composed by two major faults: the high-angle L’Aquila fault and the listric Campotosto fault, both located in the first 10 km of the upper crust. We detect an extraordinary degree of detail in the anatomy of the single fault segments resembling the degree of complexity observed by field geologists on fault outcrops. We observe multiple antithetic and synthetic fault segments tens of meters long in both the hanging wall and footwall along with bends and cross fault intersections along the main fault and fault splays. The width of the L’Aquila fault zone varies along strike from 0.3 km where the fault exhibits the simplest geometry and experienced peaks in the slip distribution, up to 1.5 km at the fault tips with an increase in the geometrical complexity. These characteristics, similar to damage zone properties of natural faults, underline the key role of aftershocks in fault growth and co-seismic rupture propagation processes. Additionally, we interpret the persistent nucleation of similar events at the seismicity cutoff depth as the presence of a rheological (i.e., creeping) discontinuity explaining how normal faults detach at depth

    Zn-induced interactions between SARS-CoV-2 orf7a and BST2/Tetherin

    Get PDF
    We present in this work a first X-ray Absorption Spectroscopy study of the interactions of Zn with human BST2/tetherin and SARS-CoV-2 orf7a proteins as well as with some of their complexes. The analysis of the XANES region of the measured spectra shows that Zn binds to BST2, as well as to orf7a, thus resulting in the formation of BST2-orf7a complexes. This structural information confirms the the conjecture, recently put forward by some of the present Authors, according to which the accessory orf7a (and possibly also orf8) viral protein are capable of interfering with the BST2 antiviral activity. Our explanation for this behavior is that, when BST2 gets in contact with Zn bound to the orf7a Cys(15) ligand, it has the ability of displacing the metal owing to the creation of a new disulfide bridge across the two proteins. The formation of this BST2-orf7a complex destabilizes BST2 dimerization, thus impairing the antiviral activity of the latter

    Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data

    Get PDF
    We investigate a large geodetic data set of interferometric synthetic aperture radar (InSAR)and GPS measurements to determine the source parameters for the three main shocks of the 2016Central Italy earthquake sequence on 24 August and 26 and 30 October (Mw6.1, 5.9, and 6.5,respectively). Our preferred model is consistent with the activation of four main coseismic asperitiesbelonging to the SW dipping normal fault system associated with the Mount Gorzano-Mount Vettore-Mount Bove alignment. Additional slip, equivalent to aMw~ 6.1–6.2 earthquake, on a secondary (1) NEdipping antithetic fault and/or (2) on a WNW dipping low-angle fault in the hanging wall of the mainsystem is required to better reproduce the complex deformation pattern associated with the greatestseismic event (theMw6.5 earthquake). The recognition of ancillary faults involved in the sequencesuggests a complex interaction in the activated crustal volume between the main normal faults and thesecondary structures and a partitioning of strain releas

    The role of Zn ions in the interaction between SARS-CoV-2 orf7a protein and BST2/tetherin

    Get PDF
    In this paper, we provide evidence that Zn2+ ions play a role in the SARS-CoV-2 virus strategy to escape the immune response mediated by the BST2-tetherin host protein. This conclusion is based on sequence analysis and molecular dynamics simulations as well as X-ray absorption experiments

    The 2009 L’Aquila (Central Italy) Seismic Sequence.

    Get PDF
    On April 6 (01:32 UTC) 2009 a MW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in Central Italy. The earthquake heavily damaged the city of L’Aquila and its surroundings, causing 308 casualties, 70,000 evacuees and incalculable losses to the cultural heritage. We present the geometry of the fault system composed by two main normal fault planes, reconstructed by means of seismicity distribution: almost 3000 events with ML≥1.9 occurred in the area during the 2009. The events have been located with a 1D velocity model we computed for the area by using data of the seismic sequence. The mainshock, located at around 9.3 km of depth beneath the town of L’Aquila, activated a 50° (+/- 3) SW-dipping and ~135° NW-trending normal fault with a length of about 16 km. The aftershocks activated the whole 10 km of the upper crust up to the surface. The geometry of the fault is coherent with the mapped San Demetrio-Paganica and Mt. Stabiata normal faults. The whole normal fault system that reached about 50 km of length by the end of December in the NW-trending direction, was activated within the first few days of the sequence when most of the energetic events occurred. The main shock fault plane was activated by a foreshock sequence culminated with a MW 4.0 on the 30th of March (13:38 UTC), showing extensional kinematic with a minor left lateral component. The second major structure, located to the north close to Campotosto village, is controlled by a MW 5.0 which occurred on the same day of the main shock (the 6th of April at 23:15 UTC) and by a MW 5.2 event (9th of April - 00:53 UTC). The fault plane shows a shallower dip angle with respect to the main fault plane, of about 35° with a tendency to flattening towards the deepest portion. Due to the lack of seismicity above 5 km depth, the connection between this structure and the mapped Monti della Laga fault is not straightforward. This northern segment is recognisable for about 12-14 km of length, always NW-trending and forming a right lateral step with the main fault plane. The result is a en-echelon system overlapping for about 6 km. Seismicity pattern also highlights the activation of numerous minor normal fault segments within the whole fault system. The deepest is located at around 13-15 km of depth, south of the L’Aquila mainshock, and it seems to be antithetic to the main fault plane
    • …
    corecore