221 research outputs found

    On the accuracy of UAV photogrammetric survey for the evaluation of historic masonry structural damages

    Get PDF
    Abstract Photogrammetric surveys via Unmanned Aerial Vehicles are nowadays a valuable tool for historic masonry structures inspection, surveillance, mapping and 3D modeling issues. When structural damage mapping and structural assessment are of interest obtaining accurate and reliable geometric models is a crucial issue. Therefore, the flight plan, the georeferencing and the data processing steps need to be properly designed. In this paper, a procedure for the photogrammetric survey via Unmanned Aerial Vehicles of a masonry structures is used in order to obtain effective visual inspections and a 3D model of a historic masonry arch bridge located along the ancient Via Amerina (Todi, Perugia, Italy). The photogrammetric survey provides a detailed representation of the actual geometry, including lack of volumes and significant cracks along the vault and the spandrel walls, outlining a severe damage state affecting all the structure. Finally, a Total Station and a Laser Scanner were used to compare the results obtained by photogrammetry, highlighting the advantages, the limits and the weaknesses offered by their use

    Use of a Zwitterionic Surfactant to Improve the Biofunctional Properties of Wool Dyed with an Onion (Allium cepa L.) Skin Extract

    Get PDF
    To improve the loadability and antioxidant properties of wool impregnated with onion skin extract, the introduction of SB3-14 surfactant in the dyeing process was evaluated. A preliminary investigation on the surfactant–quercetin interaction indicated that the optimal conditions for dye solubility, stability, and surfactant affinity require double-distilled water (pH = 5.5) as a medium and SB3-14 in a concentration above the c.m.c. (2.5 × 10−3 M). The absorption profile of textiles showed the flavonoid absorption band (390 nm) and a bathochromic feature (510 nm), suggesting flavonoid aggregates. The higher absorbance for the sample dyed with SB3-14 indicated greater dye uptake, which was further confirmed by HPLC analysis. The Folin–Ciocalteu method was applied to evaluate the total phenol content (TPC) released from the treated wool, while the assays FRAP, DPPH, ABTS, and ORAC were applied to evaluate the corresponding total antioxidant activity (TAC). Higher TPCs (about 20%) and TACs (5–55%) were measured with SB3-14, highlighting textiles with improved biofunctional properties. Spectrophotometric analyses were also performed with an artificial sweat. The potential cytotoxic effect of SB3-14 in both monomeric and aggregated forms, cell viability, and induction of apoptosis were evaluated in RAW 264.7 cells. These analyses revealed that SB3-14 is safe at concentrations below the c.m.c

    HISTOPATHOLOGICAL FINDINGS IN SYSTEMIC SCLEROSIS-RELATED MYOPATHY: FIBROSIS AND MICROANGIOPATHY

    Get PDF
    Objectives: The objective of this study was to identify specific histopathological features of skeletal muscle involvement in systemic sclerosis (SSc) patients. Methods: A total of 35 out of 112 SSc-patients (32%, including 81% female and 68% diffuse scleroderma) presenting clinical, biological and electromyographic (EMG) features of muscle weakness, were included. Patients underwent vastus lateralis biopsy, assessed for individual pathologic features including fibrosis [type I collagen (Coll-I), transforming growth factor β (TGF-β)], microangiopathy [cluster of differentiation 31 (CD31), pro-angiogenic vascular endothelial growth factor A (VEGF-A), anti-angiogenic VEGF-A165b], immune/ inflammatory response [CD4, CD8, CD20, human leucocyte antigens ABC (HLA-ABC)], and membranolytic attack complex (MAC). SSc biopsies were compared with biopsies of (n = 35) idiopathic inflammatory myopathies (IIMs) and to (n = 35) noninflammatory myopathies (NIMs). Ultrastructural abnormalities of SSc myopathy were also analyzed by transmission electron microscopy (TEM). Results: Fibrosis in SSc myopathy (81%) is higher compared with IIM (32%, p < 0.05) and with NIM (18%, p < 0.05). Vascular involvement is dominant in SSc muscle (92%), and in IIM (78%) compared with NIM (21%, p < 0.05). In particular, CD31 shows loss of endomysial vessels in SSc myopathy compared with IIM (p < 0.05) and with NIM (p < 0.01). VEGF-A is downregulated in SSc myopathy compared with IIM (p < 0.05) and NIM (p < 0.05). Conversely, VEGF-A165b is upregulated in SSc myopathy. The SSc immune/inflammatory response suggested humoral process with majority (85%) HLA-ABC fibral neoexpression and complement deposits on endomysial capillaries MAC, compared with IIM (p < 0.05), characterized by CD4+/CD8+/B-cell infiltrate, and NIM (p < 0.05). TEM analysis showed SSc vascular alterations consisting of thickening and lamination of basement membrane and endothelial cell ‘swelling’ coupled to endomysial/perimysial fibrosis. Conclusions: Fibrosis, microangiopathy and humoral immunity are predominant in SSc myopathy, even if it is difficult to identify specific histopathological hallmarks of muscle involvement in SSc, since they could be present also in other (IIM/NIM) myopathies. © 2016, © The Author(s), 2016

    Pruning wound protection products induce alterations in the wood mycobiome profile of Grapevines

    Get PDF
    Fungal pathogens involved in grapevine trunk diseases (GTDs) may infect grapevines throughout their lifetime, from nursery to vineyard, via open wounds in stems, canes or roots. In vineyards, pruning wound protection products (PWPPs) offer the best means to reduce the chance of infection by GTD fungi. However, PWPPs may affect non-target microorganisms that comprise the natural endophytic mycobiome residing in treated canes, disrupting microbial homeostasis and indirectly influencing grapevine health. Using DNA metabarcoding, we characterized the endophytic mycobiome of one-year-old canes of cultivars Cabernet Sauvignon and Syrah in two vineyards in Portugal and Italy and assessed the impact of established and novel PWPPs on the fungal communities of treated canes. Our results reveal a large fungal diversity (176 taxa), and we report multiple genera never detected before in grapevine wood (e.g., Symmetrospora and Akenomyces). We found differences in mycobiome beta diversity when comparing vineyards (p = 0.01) but not cultivars (p > 0.05). When examining PWPP-treated canes, we detected cultivar- and vineyard-dependent alterations in both alpha and beta diversity. In addition, numerous fungal taxa were over- or under-represented when compared to control canes. Among them, Epicoccum sp., a beneficial genus with biological control potential, was negatively affected by selected PWPPs. This study demonstrates that PWPPs induce alterations in the fungal communities of grapevines, requiring an urgent evaluation of their direct and indirect effects on plants health with consideration of factors such as climatic conditions and yearly variations, in order to better advise viticulturists and policy makers.info:eu-repo/semantics/publishedVersio

    In vitro functional models for human liver diseases and drug screening: beyond animal testing

    Get PDF
    Liver is one of the most important and complex organs in the human body, being characterized by a sophisticated microarchitecture and responsible for key physiological functions. Despite its remarkable ability to regenerate, acute liver failure and chronic liver diseases are major causes of morbidity and mortality worldwide. Therefore, understanding the molecular mechanisms underlying such liver disorders is critical for the successful development of novel therapeutics. In this frame, preclinical animal models have been portrayed as the most commonly used tool to address such issues. However, due to significant species differences in liver architecture, regenerative capacity, disease progression, inflammatory markers, metabolism rates, and drug response, animal models cannot fully recapitulate the complexity of human liver metabolism. As a result, translational research to model human liver diseases and drug screening platforms may yield limited results, leading to failure scenarios. To overcome this impasse, over the last decade, 3D human liver in vitro models have been proposed as an alternative to pre-clinical animal models. These systems have been successfully employed for the investigation of the etiology and dynamics of liver diseases, for drug screening, and - more recently - to design patient-tailored therapies, resulting in potentially higher efficacy and reduced costs compared to other methods. Here, we review the most recent advances in this rapidly evolving field with particular attention to organoid cultures, liver-on-a-chip platforms, and engineered scaffold-based approaches

    Glucose tolerance stages in Cystic Fibrosis are idenfied by a unique pattern of defects of Beta-cell function

    Get PDF
    To assess the order of severity of the defects of three direct determinants of glucose regulation, i.e., beta-cell function, insulin clearance and insulin sensitivity, in patients with CF categorized according their glucose tolerance status, including early elevation of mid-OGTT glucose values (>140 and < 200 mg/dL), named AGT140

    Rheumatic heart disease with triple valve involvement

    Get PDF
    Acute rheumatic fever (ARF) is a postinfectious, nonsuppurative sequela of pharyngeal infection caused by Streptococcus pyogenes, or Group A β hemolytic Streptococcus (GABHS). Of the associated symptoms, only damage to the heart’s valvular tissue, or rheumatic heart disease (RHD), can become a chronic condition leading to congestive heart failure, stroke, endocarditis, and death. ARF is the most common cause of cardiac disease in children in developing countries. A joint meeting of the World Health Organization and the International Society estimated that 12 million people in developing countries were affected by acute rheumatic fever and rheumatic heart disease, with the majority of these being children. This level of morbidity is comparable to developed countries’ in the last century, before an increase in the standard of living and the introduction of penicillin. Significant trivalvular disease, involving the mitral, aortic and tricuspid valves, is uncommon. Although rare, trivalvular disease has been described in the literature. Clinical and hemodynamic manifestations depend on the severity of each lesion. We reported this case because of the rare presentation of an uncommon disorder and to highlight the fact that the presence of trivalvular disease can be difficult to diagnose, even for a trained physician

    Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays

    Get PDF
    Within the framework of a Weight of Evidence (WoE) approach, a set of four toxicity bioassays involving the amphipod Corophium volutator (10 d lethality test on whole sediment), the sea urchin Paracentrotus lividus (fertilization and embryo toxicity tests on elutriate) and the pacific oyster Crassostrea gigas (embryo toxicity test on elutriate) was applied to sediments from 10 sampling sites of the Venice Lagoon (Italy). Sediments were collected during three campaigns carried out in May 2004 (spring campaign), October 2004 (autumn campaign) and February 2005 (winter campaign). Toxicity tests were performed on all sediment samples. Sediment grain-size and chemistry were measured during spring and autumn campaigns. This research investigated (i) the ability of toxicity tests in discriminating among sites with different contamination level, (ii) the occurrence of a gradient of effect among sampling sites, (iii) the possible correlation among toxicity tests, sediment chemistry, grain size and organic carbon, and (iv) the possible occurrence of toxicity seasonal variability. Sediment contamination levels were from low to moderate. No acute toxicity toward amphipods was observed, while sea urchin fertilization was affected only in few sites in just a single campaign. Short-term effects on larval development of sea urchin and oyster evidenced a clear spatial trend among sites, with increasing effects along the axis connecting the sea-inlets with the industrial area. The set of bioassays allowed the identification of a spatial gradient of effect, with decreasing toxicity from the industrial area toward the sea-inlets. Multivariate data analysis showed that the malformations of oyster embryos were significantly correlated to the industrial contamination (metals, polynuclear aromatic hydrocarbons, hexachlorobenzene and polychlorinated biphenyls), while sea urchin development to sediment concentrations of As, Cr and organic carbon. Both embryo toxicity tests were significantly affected by high ammonia concentrations found in the elutriates extracted from some mudflat and industrial sediments. No significant temporal variation of the toxicity was observed within the experimental period. Amendments to the set of bioassays, with inclusion of chronic tests, can certainly provide more reliability and consistency to the characterization of the (possible) toxic effects. (C) 2015 Elsevier Inc. All rights reserved

    Effect of the BH3 Mimetic Polyphenol (–)-Gossypol (AT-101) on the in vitro and in vivo Growth of Malignant Mesothelioma

    Get PDF
    Malignant mesothelioma (MM) is a primary tumor arising from mesothelial cells. The survival of MM patients following traditional chemotherapy is poor, thus innovative treatments for MM are needed. (-)-gossypol (AT-101) is a BH3 mimetic compound which possesses anti-tumoral activity by targeting multiple signaling transduction pathways. Several clinical trials employing AT-101 have been performed and some of them are still ongoing. Accordingly, we investigated the in vitro effects of AT-101 on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis and autophagy of human (MM-B1, H-Meso-1, and MM-F1) and mouse (#40a) MM cell lines. In addition, we explored the in vivo anti-tumor activities of AT-101 in a mouse model, in which the transplantation of MM cells induces ascites in the peritoneal space. AT-101 inhibited in vitro MM cells survival in a dose- and time-dependent manner and triggered autophagy, but the process was then blocked and was coincident with apoptosis activation. To confirm the effect of AT-101 in inducing the apoptosis of MM cells, MM cells were simultaneously treated with AT-101 and with the caspase inhibitor, Z-VAD-FMK. Z-VAD-FMK was able to significantly reduce the number of cells in the subG1 phase compared to the treatment with AT-101 alone. This result corroborates the induction of cell death by apoptosis following treatment with AT-101. Indeed, Western blotting results showed that AT-101 increases Bax/Bcl-2 ratio, modulates p53 expression, activates caspase 9 and the cleavage of PARP-1. In addition, the treatment with AT-101 was able to: (a) decrease the ErbB2 protein expression; (b) increase the EGFR protein expression; (c) affect the phosphorylation of ERK1/2, p38 and AKT; (d) stimulate JNK1/2 and c-jun phosphorylation. Our in vivo results showed that the intraperitoneal administration of AT-101 increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM therapies by employing AT-101 as an anticancer agent in combination with standard therapies

    Epacadostat stabilizes the apo-form of IDO1 and signals a pro-tumorigenic pathway in human ovarian cancer cells

    Get PDF
    The tryptophan-degrading enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is a plastic immune checkpoint molecule that potently orchestrates immune responses within the tumor microenvironment (TME). As a heme-containing protein, IDO1 catalyzes the conversion of the essential amino acid tryptophan into immunoactive metabolites, called kynurenines. By depleting tryptophan and enriching the TME with kynurenines, IDO1 catalytic activity shapes an immunosuppressive TME. Accordingly, the inducible or constitutive IDO1 expression in cancer correlates with a negative prognosis for patients, representing one of the critical tumor-escape mechanisms. However, clinically trialed IDO1 catalytic inhibitors disappointed the expected anti-tumor efficacy. Interestingly, the non-enzymatic apo-form of IDO1 is still active as a transducing protein, capable of promoting an immunoregulatory phenotype in dendritic cells (DCs) as well as a pro-tumorigenic behavior in murine melanoma. Moreover, the IDO1 catalytic inhibitor epacadostat can induce a tolerogenic phenotype in plasmacytoid DCs, overcoming the catalytic inhibition of IDO1. Based on this recent evidence, IDO1 plasticity was investigated in the human ovarian cancer cell line, SKOV-3, that constitutively expresses IDO1 in a dynamic balance between the holo- and apo-protein, and thus potentially endowed with a dual function (i.e., enzymatic and non-enzymatic). Besides inhibiting the catalytic activity, epacadostat persistently stabilizes the apo-form of IDO1 protein, favoring its tyrosine-phosphorylation and promoting its association with the phosphatase SHP-2. In SKOV-3 cells, both these early molecular events activate a signaling pathway transduced by IDO1 apo-protein, which is independent of its catalytic activity and contributes to the tumorigenic phenotype of SKOV-3 cells. Overall, our findings unveiled a new mechanism of action of epacadostat on IDO1 target, repositioning the catalytic inhibitor as a stabilizer of the apo-form of IDO1, still capable of transducing a pro-tumorigenic pathway in SKOV-3 tumor. This mechanism could contribute to clarify the lack of effectiveness of epacadostat in clinical trials and shed light on innovative immunotherapeutic strategies to tackle IDO1 target
    • …
    corecore