54 research outputs found

    Event triggering and deep learning for particle identification in KM3NeT

    Get PDF
    2016 - 2017Neutrino astronomy experiments like KM3NeT allow to survey the Universe leveraging the properties of neutrinos of being electrically neutral and weakly interacting particles, making them a suitable messenger. Observing neutrino emission in association with electromagnetic radiation allows evaluating models for the acceleration of particles occurring in high energy sources such as Supernovae or Active Galactic Nuclei. This is the main goal of the ARCA project in KM3NeT. In addition, KM3NeT has a program for lower energy neutrinos called ORCA, aimed at distinguishing between the scenarios of “normal hierarchy” and “inverted hierarchy” for neutrino mass eigenstates. The KM3NeT Collaboration is currently building a network of three Cherenkov telescopes in the Mediterranean sea, in deep water off the coasts of Capopassero, Italy; Toulon, France, and Pylos, Greece. The water overburden shields the detectors from down-going charged particles produced by the interactions of cosmic rays in the atmosphere, while up-going neutrinos that cross the Earth are the target of the observation. Cosmic rays are a background to the KM3NeT signal, usually discarded by directional information. Nevertheless, they provide a reliable reference to calibrate the detector and work out its effective operating parameters, namely direction and energy of the incoming particles. Estimation of tracking capabilities is directly connected to the evaluation of the ability of the experiment to detect astrophysical point-like sources, i.e. its discovery potential. Being able to distinguish among the three neutrino flavours, or between neutrinos and muons, as well as estimating the neutrino direction and energy, are the main goals of such experiments. Trigger and reconstruction algorithms are designed to separate the signal from background and to provide an estimation for the above mentioned quantities, respectively... [edited by author]XVI n.s

    Development of muon scattering tomography for a detection of reinforcement in concrete

    Get PDF
    Inspection of ageing, reinforced concrete structures is a world-wide challenge. Existing non-destructive evaluation techniques in civil and structural engineering have limited penetration depth and don't allow to precisely ascertain the configuration of reinforcement within large concrete objects. The big challenge for critical infrastructure (bridges, dams, dry docks, nuclear bioshields etc.) is understanding the internal condition of the concrete and steel, not just the location of the reinforcement. In most new constructions the location should be known and recorded in the as-built drawings, where these might not exist due to poor record keeping for older structures. Muon scattering tomography is a non-destructive and non-invasive technique which shows great promise for high-depth 3D concrete imaging. Previously, we have demonstrated that individual bars with a diameter of 33.7 +- 7.3 mm at 50 cm depth can be located using muon scattering tomography. Here we present an improved method that exploits the periodicity of bar structures. With this new method, reinforcement with bars down to 6 mm thickness can be detected and imaged

    A Novel Approach to Contamination Suppression in Transmission Detectors for Radiotherapy

    Get PDF
    The current trend in X-ray radiotherapy is to treat cancers that are in difficult locations in the body using beams with a complex intensity profile. Intensity Modulated Radiotherapy (IMRT) is a treatment which improves the dose distribution to the tumour whilst reducing the dose to healthy tissue. Such treatments administer a larger dose per treatment fraction and hence require more complex methods to verify the accuracy of the treatment delivery. Measuring beam intensity fluctuations is difficult as the beam is heavily distorted after leaving thepatient and transmission detectors will attenuate the beam and change the energy spectrum of the beam. Monolithic Active Pixel Sensors (MAPS) are ideal solid-state detectors to measure the 2D beam profile of a radiotherapy beam upstream of the patient. MAPS sensors can be made very thin (∼ 30 μm) with still very good signal-to-noise performance. This means that the beam would pass through the sensor virtually undisturbed(< 1% attenuation). Pixel pitches of between 2 μm to 100 μm are commercially available. Large area devices (∼ 15 × 15 cm 2 ) have been produced. MAPS can be made radiation hard enough to befully functional after a large number of fractions. All this makes MAPS a very realistic transmission detector candidate for beam monitoring upstream of the patient. A remaining challenge for thin, upstream sensors is that the detectors are sensitive to the signal of both therapeutic photons and electron contamination. Here a method is presented to distinguish between the signal due to electrons and photons and thus provide real-time dosimetric information in very thin sensors that does not require Monte Carlo simulation of each linear accelerator treatment head

    Early EEG responses to pre-electoral survey items reflect political attitudes and predict voting behavior

    Get PDF
    Self-reports are conventionally used to measure political preferences, yet individuals may be unable or unwilling to report their political attitudes. Here, in 69 participants we compared implicit and explicit methods of political attitude assessment and focused our investigation on populist attitudes. Ahead of the 2019 European Parliament election, we recorded electroencephalography (EEG) from future voters while they completed a survey that measured levels of agreement on different political issues. An Implicit Association Test (IAT) was administered at the end of the recording session. Neural signals differed as a function of future vote for a populist or mainstream party and of whether survey items expressed populist or non-populist views. The combination of EEG responses and self-reported preferences predicted electoral choice better than traditional socio-demographic and ideological variables, while IAT scores were not a significant predictor. These findings suggest that measurements of brain activity can refine the assessment of socio-political attitudes, even when those attitudes are not based on traditional ideological divides

    Nuclear emulsion techniques for muography

    Get PDF
    Nuclear emulsions are currently being used in the field of muography, more specifically muon radiography of volcanic edifices and fault regions. The peculiar features of such detector for cosmic muons demand appropriate data processing and analysis techniques. The paper shows the current development status of readout devices and analysis techniques developed by some research groups that established a collaborative network in Italy and Japan. An overview is given of nuclear emulsion-based detectors, from the detection principles to detector operation and set-up techniques, in connection with the expectations in terms of geophysics information. Two systems for readout are presented, one developed in the first decade of the 21st century and one that is entering duty now. The evolution in terms of data quality and speed is discussed. Finally, the most relevant data processing steps that allow working out muon absorption maps from nuclear emulsion data are described

    muography of 1949 fault in la palma canary islands spain

    Get PDF
    Muography (muon radiography) is a new geophysical technique that allows investigation of inner structures of an edifice with a very detailed spatial resolution. It has been recently used for several volcanoes and different geoscientific targets. In 2011 Tanaka et al. succeeded to find hidden ancient seismic faults. In 1949 there was a volcanic activity of the Cumbre Vieja, La Palma, Canary Islands, Spain and a 1km long fault suddenly appeared during the active period. The fault might be the sign of a large scale land collapse. In order to get additional information, investigations by several geophysical exploration techniques are needed. We consider that muography can be applied to study the shallow part of the fault and it can clarify some important parameters: the bulk density, the width of the low density zone, and the depth. Previous investigations allowed detecting two ancient seismic faults that have 20m-wide mechanically fractured zone consisting of highly damaged rocks. The 1949 fault might be the result of large scale land slide and the slide length might be just a few meter. Therefore the expected width of the fault is only a few meter. In order to detect such narrow fault, the muon detector should have as high spatial resolution as possible. In addition, it is difficult to get continuous power supply near the fault. Nuclear emulsions are a kind of photographic films that have high sensitivity for high energy charged particles. They also have high spatial resolution for high energy muon paths and do not need any power supply to be operated. We placed an emulsion detector having 0.19 m 2 effective area near the 1949 fault. The exposure started on January 2014 and lasted 106 days. All the emulsion films were developed and they are under analysis. We also estimated the expected performance of this test exposure. Assuming a very simple model, we evaluated the detectable region as a function of the low density zone width and of the depth from the ground surface as well

    muography with nuclear emulsions stromboli and other projects

    Get PDF
    The muon radiography is a novel imaging technique to probe the volcanoes interior, using the capability of high energy cosmic ray muons to penetrate large thicknesses of rock. In this way it is possible to derive a 2D density map along the muon trajectory of volcanic edifices and deduce information on the variations in the rock density distribution, like those expected from dense lava conduits, or low density magma supply paths. This method is applicable also to study geological objects as glaciers, faults, oil underground reservoirs, engineering constructions, where a density contrast is present. Nuclear emulsions are well suited to be employed in this context for their excellent angular resolution; they are compact and robust detectors, able to work in harsh environments without need of power supply. On the other side, a long exposure time is required for a reasonable detector surface (~10 m 2 ) in order to collect a sufficient statistics of muons, and a quasi-real time analysis of the emulsion data is rather difficult due to the scanning time needed by the optical microscopes. Such drawback is on the way to be overcome thanks to a recent R&D program on ultra-fast scanning systems. Muon radiography technique, even if limited to the summit part of the volcano edifice, represents an important tool of investigation, at higher spatial resolution, complementary to the conventional geophysics techniques. The first successful result in this field was obtained by a Japanese group that observed in 2007 the conduit structure of Mt. Asama. Since 2010, other interesting volcanoes have been probed with the same method: Stromboli in 2011, Mt. Teide in 2012 and La Palma in 2014. Here we discuss the muon imaging technique reporting the nuclear emulsion detector design exposed at Stromboli and results of the data analysis
    corecore