29 research outputs found

    Genetic Evidence of Expansion by Passive Transport of Aedes (Stegomyia) aegypti in Eastern Argentina

    Get PDF
    Aedes (Stegomyia) aegypti (Linnaeus) (Diptera: Culicidae) is the principal vector of the yellow fever virus, the five dengue virus serotypes (DENV-1 to DENV-5), chikungunya virus, Zika virus, and several types of encephalitis [1–3]. The behavior of this species is synanthropic and anthropophilic, being the culicid most closely associated with human populations [4]. The incidence of dengue has increased 30-fold over the last 50 years; according to the World Health Organization, up to 50–100 million infections occur each year in over 100 endemic countries, and at least one half of the world’s population has risk of being infected with dengue virus [5]. Chikungunya virus has been responsible for over 2 million human infections during the past decade and is currently moving to subtropical latitudes as well as to the western hemisphere. Up until April 2015, there have been 1,379,788 suspected cases of this disease in the Caribbean islands, Latin America, and the United States. This expansion into novel habitats brings unique risks associated with further spread of the virus and the disease it causes [6]. On the other hand, there are about 200,000 cases of yellow fever each year worldwide responsible for about 30,000 deaths, most of them from Africa. Zika virus is an emerging mosquito-borne virus, with outbreaks in Africa, Asia, and the Pacific between 2007 and 2014. Since 2015, there has been an increase in reports of ZIKV infection in the Americas, with Brazil being the most affected country, with 534 confirmed cases and 72,062 suspected cases between 2015 and 2016 [7]. All these viruses and the mosquito vector A. aegypti present in the Americas represent a serious risk. So far, in 2016, 39,926 dengue cases produced by DENV-1 and DENV-4 serotypes and 319 autochthonous cases of chikungunya fever have been reported in Argentina. According to the last census, Argentina has approximately 40 million people (National Institute of Statistics and Censuses of Argentina [INDEC], Census 2010), and over 38 million live in areas suitable for the transmission of dengue and chikungunya viruses [8]. Moreover, although there were 22 imported cases of Zika and 24 autochthonous cases confirmed in Argentina, there is a high incidence of cases in Brazil, and besides that, there is an internal circulation of the virus in the neighboring countries Brazil, Paraguay, and Bolivia [7,8], in addition to the constant expansion of the mosquito vector.Facultad de Ciencias Naturales y Muse

    Genetic Evidence of Expansion by Passive Transport of Aedes (Stegomyia) aegypti in Eastern Argentina

    Get PDF
    Aedes (Stegomyia) aegypti (Linnaeus) (Diptera: Culicidae) is the principal vector of the yellow fever virus, the five dengue virus serotypes (DENV-1 to DENV-5), chikungunya virus, Zika virus, and several types of encephalitis [1–3]. The behavior of this species is synanthropic and anthropophilic, being the culicid most closely associated with human populations [4]. The incidence of dengue has increased 30-fold over the last 50 years; according to the World Health Organization, up to 50–100 million infections occur each year in over 100 endemic countries, and at least one half of the world’s population has risk of being infected with dengue virus [5]. Chikungunya virus has been responsible for over 2 million human infections during the past decade and is currently moving to subtropical latitudes as well as to the western hemisphere. Up until April 2015, there have been 1,379,788 suspected cases of this disease in the Caribbean islands, Latin America, and the United States. This expansion into novel habitats brings unique risks associated with further spread of the virus and the disease it causes [6]. On the other hand, there are about 200,000 cases of yellow fever each year worldwide responsible for about 30,000 deaths, most of them from Africa. Zika virus is an emerging mosquito-borne virus, with outbreaks in Africa, Asia, and the Pacific between 2007 and 2014. Since 2015, there has been an increase in reports of ZIKV infection in the Americas, with Brazil being the most affected country, with 534 confirmed cases and 72,062 suspected cases between 2015 and 2016 [7]. All these viruses and the mosquito vector A. aegypti present in the Americas represent a serious risk. So far, in 2016, 39,926 dengue cases produced by DENV-1 and DENV-4 serotypes and 319 autochthonous cases of chikungunya fever have been reported in Argentina. According to the last census, Argentina has approximately 40 million people (National Institute of Statistics and Censuses of Argentina [INDEC], Census 2010), and over 38 million live in areas suitable for the transmission of dengue and chikungunya viruses [8]. Moreover, although there were 22 imported cases of Zika and 24 autochthonous cases confirmed in Argentina, there is a high incidence of cases in Brazil, and besides that, there is an internal circulation of the virus in the neighboring countries Brazil, Paraguay, and Bolivia [7,8], in addition to the constant expansion of the mosquito vector.Facultad de Ciencias Naturales y Muse

    Global genetic diversity of Aedes aegypti

    Get PDF
    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.Centro de Estudios Parasitológicos y de Vectore

    Global genetic diversity of Aedes aegypti

    Get PDF
    Mosquitoes, especially Aedes aegypti, are becoming important models for studying invasion biology. We characterized genetic variation at 12 microsatellite loci in 79 populations of Ae. aegypti from 30 countries in six continents, and used them to infer historical and modern patterns of invasion. Our results support the two subspecies Ae. aegypti formosus and Ae. aegypti aegypti as genetically distinct units. Ae. aegypti aegypti populations outside Africa are derived from ancestral African populations and are monophyletic. The two subspecies co-occur in both East Africa (Kenya) and West Africa (Senegal). In rural/forest settings (Rabai District of Kenya), the two subspecies remain genetically distinct, whereas in urban settings, they introgress freely. Populations outside Africa are highly genetically structured likely due to a combination of recent founder effects, discrete discontinuous habitats and low migration rates. Ancestral populations in sub-Saharan Africa are less genetically structured, as are the populations in Asia. Introduction of Ae. aegypti to the New World coinciding with trans-Atlantic shipping in the 16th to 18th centuries was followed by its introduction to Asia in the late 19th century from the New World or from now extinct populations in the Mediterranean Basin. Aedes mascarensis is a genetically distinct sister species to Ae. aegypti s.l. This study provides a reference database of genetic diversity that can be used to determine the likely origin of new introductions that occur regularly for this invasive species. The genetic uniqueness of many populations and regions has important implications for attempts to control Ae. aegypti, especially for the methods using genetic modification of populations.Centro de Estudios Parasitológicos y de Vectore

    Oligoryzomys flavescens (Rodentia, Muridae): gene flow among populations from central-eastern Argentina

    No full text
    Fil: Chiappero, Marina B. Universidad Nacional de Córdoba. Facultad de Ciencias Médicas. Cátedra de Química Biológica; Argentina.Fil: Calderón, Gladys E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.Fil: Gardenal, Cristina N. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Córdoba; Argentina.In species acting as hosts of infectious agents, the extent of gene flow between populations is of particular interest because the expansion of different infectious diseases is usually related to the dispersal of the host. We have estimated levels of gene flow among populations of the sigmodontine rodent Oligoryzomys flavescens, in which high titers of antibodies have been detected for a Hantavirus in Argentina that produces a severe pulmonary syndrome. Enzyme polymorphism was studied by means of starch gel electrophoresis in 10 populations from the area where human cases of Hantavirus have occurred. Genetic differentiation between populations was calculated from FST values with the equation Nm = [(1/FST) - 1]/4. To assess the relative importance of current gene flow and historical associations between populations, the relationship of population pairwise log Nm and log geographic distance was examined. Low FST (mean = 0.038) and high Nm (15.27) values suggest high levels of gene flow among populations. The lack of an isolation by distance pattern would indicate that this species has recently colonized the area. The northernmost population, located on the margin of a great river, shows very high levels of gene flow with the downstream populations despite the large geographic distances. Passive transport of animals down the river by floating plants would promote unidirectional gene flow. This fact and the highest mean heterozygosity of that northernmost population suggest it is a center of dispersal within the species' range

    Temporal Fluctuation of Effective Size in Populations of Calomys musculinus (Muridae: Sigmodontinae)

    No full text
    Fil: Chiappero, Marina B. Cátedra de Genétìca de Poblaciones y Evolución, FCEFyN, Universidad Nacional de Córdoba, Córdoba; Argentina.Fil: Garcia, B. A. Cátedra de Bioquímica y Biología Molecular, FCM, Universidad Nacional de Córdoba, Córdoba; Argentina.Fil: Calderón, G. E. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Virales Humanas; Argentina.Fil: Gardenal, Cristina N. Cátedra de Genétìca de Poblaciones y Evolución, FCEFyN, Universidad Nacional de Córdoba, Córdoba; Argentina.Calomys musculinus is the natural reservoir of Junin virus, the etiological agent of Argentine hemorrhagic fever. In this paper we measure the effective size of 2 populations of the rodent over a 2-year period. Twenty enzyme-coding loci were analyzed using vertical starch gel electrophoresis. Effective population sizes (Nes) were estimated by the pseudolikelihood method in 2 populations 280 km apart in central Argentina. Both populations experienced marked seasonal changes in relative density and in Ne (between 19.8 and infinity). Changes in percentage of polymorphic loci and mean number of alleles per locus were statistically significant and were roughly correlated with density and Ne. Observed changes in heterozygosity, in contrast, were not significant. After low-density periods, mixing of surviving individuals coming from different demes may play an important role in the maintenance of variability and recovery of Ne in populations of C. musculinus

    Genetic structure of Aedes aegypti in the city of Córdoba (Argentina), a recently reinfested area

    No full text
    To understand the transmission of a vector-borne disease, knowledge of the magnitude of dispersal among vector populations is essential because of its influence on pathogen transfer. The principal vector of dengue, the most common arboviral disease in the world, is the mosquito Aedes aegypti (L.). This tropical and subtropical species is native to Africa but has dispersed worldwide since the XV century. In Argentina, the species was declared eradicated in 1963, but has reinfested the country in recent years. In the present work, we used RAPD-PCR markers to assess the levels of genetic variability and differentiation among populations of Ae. aegypti (the vector of dengue and yellow fever) in Córdoba, the second largest city in Argentina. We detected similar levels of genetic variability (He between 0.351-0.404) across samples and significant genetic differentiation between most population pairs within the city (F ST between 0.0013-0.0253). Genetic distances indicate that there are three distinct groups, formed predominantly by populations that are connected by, or near, main roads. This suggests that, in addition to other factors such as availability of oviposition sites or step-by-step migration, passive transport plays an important role in gene flow within the city

    Phylogeography of screaming hairy armadillo Chaetophractus vellerosus: Successive disjunctions and extinctions due to cyclical climatic changes in southern South America.

    Get PDF
    Little is known about phylogeography of armadillo species native to southern South America. In this study we describe the phylogeography of the screaming hairy armadillo Chaetophractus vellerosus, discuss previous hypothesis about the origin of its disjunct distribution and propose an alternative one, based on novel information on genetic variability. Variation of partial sequences of mitochondrial DNA Control Region (CR) from 73 individuals from 23 localities were analyzed to carry out a phylogeographic analysis using neutrality tests, mismatch distribution, median-joining (MJ) network and paleontological records. We found 17 polymorphic sites resulting in 15 haplotypes. Two new geographic records that expand known distribution of the species are presented; one of them links the distributions of recently synonimized species C. nationi and C. vellerosus. Screaming hairy armadillo phylogeographic pattern can be addressed as category V of Avise: common widespread linages plus closely related lineages confined to one or a few nearby locales each. The older linages are distributed in the north-central area of the species distribution range in Argentina (i.e. ancestral area of distribution). C. vellerosus seems to be a low vagility species that expanded, and probably is expanding, its distribution range while presents signs of genetic structuring in central areas. To explain the disjunct distribution, a hypothesis of extinction of the species in intermediate areas due to quaternary climatic shift to more humid conditions was proposed. We offer an alternative explanation: long distance colonization, based on null genetic variability, paleontological record and evidence of alternance of cold/arid and temperate/humid climatic periods during the last million years in southern South America

    Population genetic structure and demographic history of the scallop Argopecten purpuratus from Peru and Northern Chile: implications for management and conservation of natural beds

    No full text
    The scallop Argopecten purpuratus is a heavily exploited resource along the coasts of Peru and north-central Chile, especially after El Niño events, when the species undergoes high increases in abundance. Little is known about its genetic structure or demographic history, two important factors to ensure sustainable exploitation. We sequenced the cytochrome oxidase I and cytochrome b genes of 116 individuals from six localities (between 05°44′S 80°53′W and 23°31′S 70°33′W). We found high levels of genetic diversity in the analyzed populations. No geographical structuring was observed in the haplotype network, which consisted of a few central, widely distributed haplotypes, and many derived population-specific haplotypes separated by few mutations. This pattern suggests a recent population expansion and moderate to low current gene flow among populations. Mismatch analysis, neutrality tests, and a Bayesian skyline analysis confirmed the occurrence of a past event of population expansion approximately 5,000 years ago, which coincides with increasingly stronger and more frequent El Niño events
    corecore