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Background
Aedes (Stegomyia) aegypti (Linnaeus) (Diptera: Culicidae) is the principal vector of the yellow
fever virus, the five dengue virus serotypes (DENV-1 to DENV-5), chikungunya virus, Zika
virus, and several types of encephalitis [1–3]. The behavior of this species is synanthropic and
anthropophilic, being the culicid most closely associated with human populations [4]. The inci-
dence of dengue has increased 30-fold over the last 50 years; according to the World Health
Organization, up to 50–100 million infections occur each year in over 100 endemic countries,
and at least one half of the world’s population has risk of being infected with dengue virus [5].
Chikungunya virus has been responsible for over 2 million human infections during the past
decade and is currently moving to subtropical latitudes as well as to the western hemisphere.
Up until April 2015, there have been 1,379,788 suspected cases of this disease in the Caribbean
islands, Latin America, and the United States. This expansion into novel habitats brings unique
risks associated with further spread of the virus and the disease it causes [6]. On the other
hand, there are about 200,000 cases of yellow fever each year worldwide responsible for about
30,000 deaths, most of them from Africa. Zika virus is an emerging mosquito-borne virus, with
outbreaks in Africa, Asia, and the Pacific between 2007 and 2014. Since 2015, there has been an
increase in reports of ZIKV infection in the Americas, with Brazil being the most affected coun-
try, with 534 confirmed cases and 72,062 suspected cases between 2015 and 2016 [7]. All these
viruses and the mosquito vector A. aegypti present in the Americas represent a serious risk. So
far, in 2016, 39,926 dengue cases produced by DENV-1 and DENV-4 serotypes and 319
autochthonous cases of chikungunya fever have been reported in Argentina. According to the
last census, Argentina has approximately 40 million people (National Institute of Statistics and
Censuses of Argentina [INDEC], Census 2010), and over 38 million live in areas suitable for
the transmission of dengue and chikungunya viruses [8]. Moreover, although there were 22
imported cases of Zika and 24 autochthonous cases confirmed in Argentina, there is a high
incidence of cases in Brazil, and besides that, there is an internal circulation of the virus in the
neighboring countries Brazil, Paraguay, and Bolivia [7,8], in addition to the constant expansion
of the mosquito vector [9].

In particular, Argentina participated in the A. aegypti eradication program carried out by
the Pan-American Health Organization between the 1950s and early 1970s; the species was
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eradicated from the country in 1967. However, in 1986 the mosquito was detected in the north-
east of the country in the border with Paraguay, and some years later, it was found in north-
western and central areas. As a consequence, the current geographical distribution of the
species is wider than before its eradication [10,11], with a fast and constant expansion to the
south [9].

Albrieu Llinás and Gardenal [12] demonstrated that a 450-bp fragment of the mitochon-
drial nicotinamide adenine dinucleotide hydride (NADH) dehydrogenase subunit 5 gene
(ND5) was a reliable marker to estimate the genetic structure of A. aegypti populations in
Argentina. In this phylogeographic study, they detected 14 haplotypes from 22 populations
covering most of the distribution of this species in the country, identifying three main hap-
logroups that suggest different colonization events from neighboring countries: Bolivia, Para-
guay, and Brazil. The authors proposed that the absence of genetic variability in the east of
Argentina and Paraguay was due to successful mosquito eradication campaigns, with recent
recolonization of the region by founder events followed by a rapid range expansion. On the
other hand, inefficient control campaigns in the northwest of Argentina would have caused the
maintenance of relictual populations, resulting in high haplotype variability in the area [13].

In 2002, the southernmost limit for A. aegypti in Argentina was Chascomús, 130 km away
from the city of Buenos Aires (Fig 1) [14]. Then, in 2013 our group studied the biogeographical
record of A. aegypti in the southeast of the country, confirming the last record of this species in
Chascomús but also finding the species between March 2011 and 2012 in towns along Route
Number (N°) 2 for the first time, specifically at the city of Dolores, which is 98.7 km from
Chascomús (Fig 1) [15]. Recently, Zanotti et al. [9] reported Villa Gesell, a small town on Pro-
vincial Route N° 11 at 110 km fromMar del Plata and 376 km from the city of Buenos Aires, as
the southernmost limit.

Most of the areas sampled by our group in 2013 are on the side of one of the most important
highways in the country, Route N° 2, which connects the cities of Buenos Aires and La Plata
with the city of Mar del Plata and the most visited coastal towns. This highway takes the bulk
of the traffic in a southeastern direction, concentrating the majority of people who move from
the north of Argentina and the neighboring countries to the coast, principally in the summer
time [16]. Despite the fact that this mosquito is well established in small towns along Route N°
2, such as Dolores as well as to the north of Argentina and in the neighboring countries, the
presence of A. aegypti was not reported for Mar del Plata.

The aim of this report is to determine the origin of the A. aegypti populations along Route
N° 2, analyze the mitochondrial lineages, and compare their haplotypes with the haplotypes
previously determined by Albrieu Llinás and Gardenal [12] in Argentina and neighboring
countries.

Haplotypes Present in the Southern Biogeographic Distribution of
A. aegypti in Argentina
All through March 2013, mosquito larvae were collected and identified as A. aegypti according
to a specific key [14]. The sampling stations were cemeteries (flower pots) and used tires
located in the towns next to the Provincial Route N° 2 (Lezama, Castelli, and Dolores); addi-
tionally, we took into consideration the cities of Buenos Aires and La Plata (both at approxi-
mately 400 km north fromMar del Plata) and San Clemente del Tuyú, a small town located on
the Atlantic coast on the Provincial Route N° 11 (at 328 km south from the city of Buenos
Aires). New samples from Buenos Aires and La Plata were analyzed in order to confirm if the
haplotypes detected by Albrieu Llinás and Gardenal in 2012 are still present in those places
and, therefore, if the new results could be compared. The sampling station from San Clemente
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del Tuyú was the only one obtained by our group in Route N° 11 until 2013 (Fig 1). To reduce
the risk of including individuals from eggs coming from the same female, the insects were col-
lected from three or four different larval habitats in each sampling site analyzed, except for San
Clemente del Tuyú, where only one place was positive for A. aegypti larvae (Table 1).

Total DNA from a single mosquito at the fourth larval instar was extracted with the Pure-
Link Genomic DNAMini Kit (Invitrogen, Grand Island, New York, US) according to the man-
ufacturer’s instructions. A 450-bp fragment of the ND5 gene of 86 individuals from seven

Fig 1. Haplotype frequencies for ND5 gene in studied populations and comparison with some of the
populations analyzed by Albrieu Llinás and Gardenal [12]. Frequencies for H1 are indicated in red, and
for H2, in green. Populations analyzed by Albrieu Llinás and Gardenal [12] are included for comparison
purposes; only frequencies for H1 (light red) and H2 (light green) are indicated; all other haplotypes are in
grey. Haplotype frequencies in the cities of Buenos Aires and La Plata were the same as in Albrieu Llinás and
Gardenal [12]. Bordering countries: BO, Bolivia; PA, Paraguay; BR, Brazil; UR, Uruguay.

doi:10.1371/journal.pntd.0004839.g001
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populations (Table 1) was amplified by polymerase chain reaction (PCR), using N5A and N5B
primers [12]. The amplified products were analyzed by electrophoresis in 1% (w/v) agarose
gels in tris-acetate buffer and ethidium bromide staining, and the purified PCR products were
submitted for nucleotide sequencing (Macrogen, Korea). The identity of the DNA sequence
datasets was confirmed by nucleotide Basic Local Alignment Search Tool (BLASTn). Sequences
were manually inspected and corrected using the program Chromas Lite version 2.2.1 (Techne-
lysium, South Brisbane, Australia) and aligned using Multiple Sequence Comparison by Log-
Expectation (MUSCLE) [17]. Haplotype frequencies for each population were calculated using
the program DNAsp 5.10 [18]. The results obtained were compared with the 14 haplotypes
previously obtained to determine the distribution of mitochondrial lineages of A. aegypti popu-
lations present along Route N° 2 [12].

The dominant haplotype of this region (H1) was detected in all sampled areas, while haplo-
type H2 was present only in Chascomús and Lezama. According to Albrieu Llinás and Gar-
denal [12], H1 was a unique haplotype found in eight populations from the east of Argentina,
and the presence of this haplotype would indicate a recent recolonization event of this mos-
quito after the major control campaign in this area. Moreover, the presence of this haplotype in
the northwestern and northeastern regions indicates that the expansion areas of A. aegypti
would be influenced mainly by nearby populations. On the other hand, haplotype H2 was
found by Albrieu Llinás and Gardenal [12] in the northeast and center of Argentina. In our
present study, H2 was detected only in the north of this new distribution, in Chascomús and
Lezama, although at a low frequency (7% and 36%, respectively, Fig 1). This result suggests
that H2 could have been introduced in these localities by a lower number of travelers from
northern populations than those having H1 or that it has expanded not far from a recently col-
onized locality.

It has been discussed that the dispersal and colonization of new areas by A. aegypti and the
viruses they transmit may be influenced by climatic conditions like global warming or a specific
phenomenon, such as El Niño [19,20]. While the global phenomenon could be influencing the
movement of these mosquitoes because it generates ideal conditions for their development
(like mild temperature and water availability), there are factors on a smaller scale that could
help the movement of A. aegypti on a local scale, like human transportation and the offer of dif-
ferent breeding containers, such as used tires and car batteries exposed to rainfall [21]. In fact,
it is widely accepted that A. aegypti was introduced into America from Asia via slave ships [22].
In a previous study, we hypothesized that the dispersal of A. aegypti could be due to human

Table 1. Sampling stations and specimens of A. aegypti collected.

Town Number of Flowerpots
Revised

Number of Used Tires
Revised

Number of Individuals Obtained
per Town

Number of Individuals Analyzed per
Population

Chascomús 200 (0)a 28 (12)a 315 15

Lezama 200 (0)a 31 (15)a 264 12

Castelli 300 (0)a 18 (9)a 230 16

Dolores 450 (0)a 23 (13)a 367 11

Avellaneda n/db 15 (10)a 210 11

La Plata n/db 20 (13)a 346 11

S. Clementec n/db 5 (1)a 125 10

a In parentheses, positive sampling stations for A. aegypti.
b n/d, no data.
c S. Clemente, San Clemente del Tuyú.

doi:10.1371/journal.pntd.0004839.t001
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activities increasing the mosquito dispersion in a passive way in the southeast of Argentina
[14]. We detected established populations of A. aegypti in Lezama (at 39.2 km to Chascomús)
in 2011 and then in Lezama, Castelli (27.7 km south from Lezama), and Dolores (31.8 km
south from Castelli) in 2012; therefore, these mosquito populations commuted 59.5 km in only
one year, which would imply a great influence of traffic flow to disperse populations at such a
rapid rate.

In the present study, passive dispersal hypothesis is supported by the low diversity (n = 2) of
haplotypes found in the studied range. As A. aegypti has a short flight range (about 10–800 m)
during its entire lifetime [23], a high diversity of haplotypes between sampling points studied
would be expected. However, we might think that in this expansion area there is a passive dis-
persal, probably due to the human movement between these locations, understanding human
movement as not only commuting of people but also trading. Passive transport of eggs, larvae,
and adults has been suggested as the main mechanism for long-distance dispersal not only by
the terrestrial trade of used tires [9,24], other goods [25], and tourism [26] but also by other
types of transportation like planes [27] and boats [28,29].

A recent colonization of some species present in new geographical regions because of
anthropic action often results in low levels of genetic diversity [12,30]. The higher rate of trav-
elers along all the roads increases the risk of mosquito transference and thus the probability of
genetic exchanges between the insect populations. According to our results, only passive migra-
tion by human activity may explain the observed patterns, and it would be a very important
factor, at local scales, for the colonization of new areas. Results presented here show, once
again, the urgent need to implement effective campaigns to control vector mosquitoes—and
consequently, a need for the development of responsible control campaigns for mosquito-
borne diseases.
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