18,081 research outputs found
An Outer Gap Model of High-Energy Emission from Rotation-Powered Pulsars
We describe a refined calculation of high energy emission from
rotation-powered pulsars based on the Outer Gap model of Cheng, Ho \&~Ruderman
(1986a,b). We have improved upon previous efforts to model the spectra from
these pulsars (e. g. Cheng, et al. 1986b; Ho 1989) by following the variation
in particle production and radiation properties with position in the outer gap.
Curvature, synchrotron and inverse-Compton scattering fluxes vary significantly
over the gap and their interactions {\it via} photon-photon pair production
build up the radiating charge populations at varying rates. We have also
incorporated an approximate treatment of the transport of particle and photon
fluxes between gap emission zones. These effects, along with improved
computations of the particle and photon distributions, provide very important
modifications of the model gamma-ray flux. In particular, we attempt to make
specific predictions of pulse profile shapes and spectral variations as a
function of pulse phase and suggest further extensions to the model which may
provide accurate computations of the observed high energy emissions.Comment: 13 pages, LaTeX, for figures send request to [email protected]
Hydrodynamic squeeze-film bearings for gyroscopes
Experimental tests are conducted on squeeze-film bearings by applying electricity to piezoelectric ceramics, causing vibrations at thousands or millions of Hz that are amplified and transmitted to the bearing. Rotor operation through 24,000 rpm without whirl instability proved bearing ability to support rotor weight without hydrodynamic action
Self-Tuning Adaptive-Controller Using Online Frequency Identification
A real time adaptive controller was designed and tested successfully on a fourth order laboratory dynamic system which features very low structural damping and a noncolocated actuator sensor pair. The controller, implemented in a digital minicomputer, consists of a state estimator, a set of state feedback gains, and a frequency locked loop (FLL) for real time parameter identification. The FLL can detect the closed loop natural frequency of the system being controlled, calculate the mismatch between a plant parameter and its counterpart in the state estimator, and correct the estimator parameter in real time. The adaptation algorithm can correct the controller error and stabilize the system for more than 50% variation in the plant natural frequency, compared with a 10% stability margin in frequency variation for a fixed gain controller having the same performance at the nominal plant condition. After it has locked to the correct plant frequency, the adaptive controller works as well as the fixed gain controller does when there is no parameter mismatch. The very rapid convergence of this adaptive system is demonstrated experimentally, and can also be proven with simple root locus methods
Maximizing sum rate and minimizing MSE on multiuser downlink: Optimality, fast algorithms and equivalence via max-min SIR
Maximizing the minimum weighted SIR, minimizing the weighted sum MSE and maximizing the weighted sum rate in a multiuser downlink system are three important performance objectives in joint transceiver and power optimization, where all the users have a total power constraint. We show that, through connections with the nonlinear Perron-Frobenius theory, jointly optimizing power and beamformers in the max-min weighted SIR problem can be solved optimally in a distributed fashion. Then, connecting these three performance objectives through the arithmetic-geometric mean inequality and nonnegative matrix theory, we solve the weighted sum MSE minimization and weighted sum rate maximization in the low to moderate interference regimes using fast algorithms
EGRET Gamma-Ray Blazars: Luminosity Function and Contribution to the Extragalactic Gamma-Ray Background
We describe the properties of the blazars detected by EGRET and summarize the
results on the calculations of the evolution and luminosity function of these
sources.
Of the large number of possible origins of extragalactic diffuse gamma-ray
emission, it has been postulated that active galaxies might be one of the most
likely candidates. However, some of our recent analyses indicate that only 25
percent of the diffuse extragalactic emission measured by SAS-2 and EGRET can
be attributed to unresolved gamma-ray blazars.
Therefore, other sources of diffuse extragalactic gamma-ray emission must
exist.
We present a summary of these results in this article.Comment: 4 pages, accepted for publication in Astroparticle Physic
A theoretical study of heterojunction and graded band gap type solar cells
The work performed concentrated on including multisun effects, high temperature effects, and electron irradiation effects into the computer analysis program for heterojunction and graded bandgap solar cells. These objectives were accomplished and the program is now available for such calculations
Task-Related, Low-Frequency Task-Residual, and Resting State Activity in the Default Mode Network Brain Regions
The hypothesis of a default mode network (DMN) of brain function is based on observations of task-independent decreases of brain activity during effort as participants are engaged in tasks in contrast to resting. On the other hand, studies also showed that DMN regions activate rather than deactivate in response to task-related events. Thus, does DMN “deactivate” during effort as compared to resting? We hypothesized that, with high-frequency event-related signals removed, the task-residual activities of the DMN would decrease as compared to resting. We addressed this hypothesis with two approaches. First, we examined DMN activities during resting, task residuals, and task conditions in the stop signal task using independent component analysis (ICA). Second, we compared the fractional amplitude of low-frequency fluctuation (fALFF) signals of DMN in resting, task residuals, and task data. In the results of ICA of 76 subjects, the precuneus and posterior cingulate cortex (PCC) showed increased activation during task as compared to resting and task residuals, indicating DMN responses to task events. Precuneus but not the PCC showed decreased activity during task residual as compared to resting. The latter finding was mirrored by fALFF, which is decreased in the precuneus during task residuals, as compared to resting and task. These results suggested that the low-frequency blood oxygen level-dependent signals of the precuneus may represent a useful index of effort during cognitive performance
Analysis of supersonic conical flows
Method of characteristics analytical technique for flow predictions of supersonic cross flows over conical bodie
- …