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ANALYSIS OF SUPERSONIC CONICAL FLOWS 

By C. W. Chiang* and Richard D. Wagner, Jr. 
Langley Research Center 

SUMMARY 

An analytical technique is described for conical flow-field predictions for a particu- 
lar class of flows. 
flows are considered; the accelerating cross  flow is produced when the free s t ream is 
normal to the conical axis of symmetry (a fin or stabilizer), and the decelerating cross  
flow is produced when the free s t ream is in  the plane of symmetry (delta wing). For the 
first problem the solution is complete; for the latter only the solution for the supersonic 
cross-flow region is presented. 

That is, problems of accelerating and decelerating supersonic cross  

The fundamental differential equations a r e  transformed into a dimensionless conical 
coordinate system. Since the partial differential equations governing a conical flow field 
a r e  of hyperbolic type in regions of supersonic cross  flow, the method of characteristics 
can be applied. The characteristic equations and compatibility equations are derived. 
Numerical computations are performed, starting from the leading edge and proceeding 
to the central portion of the wing. 

INTRODUCTION 

Linearized theory has been widely used to predict aerodynamic data for slender 
bodies at small  angles of attack. 
range, nonlinear effects become important and the results obtained by the use of linearized 
theory a r e  of little value. In fact, at high Mach numbers even the second-order theory is 
not adequate, and meaningful results can be obtained only from analyses including non- 
linear effects. The present work is one phase of a program initiated to develop analytical 
techniques for flow-field predictions of a particular class of flows, taking into account 
nonlinear effects. 

For  high Mach numbers, especially in  the hypersonic 

Only conical flows will be considered. 

Conical flow can be obtained over a conical body; that is, a body whose surface is 
generated by straight lines through a common apex. In conical flow, the flow properties 
along any ray directed from the vertex remain uniform, a feature which allows a trans- 
formation from a three-dimensional Cartesian coordinate system into a two-dimensional 
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conical coordinate system. Thus computations a r e  greatly simplified. Many component 
parts of supersonic vehicles are conical; a flat delta wing is a typical example. 

Numerous examples of the application of linearized theory to supersonic conical 
flows exist in  the l i terature (refs. 1 to 3). The system of rotational conical-flow equa- 
tions has been considered by several  investigators (refs. 4 to 15). These analyses show 
that the character of the transformed equations is determined by the cross-flow Mach 
number (i.e., the component of the local Mach number normal to the ray from the apex). 
If the cross  flow is subsonic, sonic, or  supersonic, the equations a r e  elliptic, parabolic, 
or  hyperbolic, respectively. In the present paper, only flows for which the c ross  flow is 
supersonic a r e  considered. This restriction allows the use of the method of character- 
ist ics for numerical computations. 

Problems of accelerating and decelerating supersonic c ross  flows are considered. 
As shown in figure 1, an accelerating cross  flow is produced when the f ree  s t ream is nor- 
mal to the conical axis of symmetry (a fin o r  stabilizer), while a decelerating c ross  flow 
is produced when the f ree  stream is parallel to the plane of symmetry of the wing as 
occurs with a delta wing. 
region prevail until the cross  flow approaches sonic (though in  many cases  nearly the 
entire wing is covered); for accelerating cross  flows, a complete solution is obtained for 
a symmetrical body. 

For the latter problem, solutions for the supersonic cross-flow 

SYMBOLS 

a dimensionless sonic velocity (actual sonic velocity divided by V,) 

a i  ,a2 ,a3 defined by equations (17) 

bl,b2 ,b3 ,b4 defined by equations (19) 

surface pressure coefficient cP 

CV specific heat at constant volume 

h enthalpy 

M Mach number 

.. n unit normal to the surface 

P pressure 
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entropy; also shock point 

S 

T 

s - so 
Y(Y - 1)CV 

dimensionless entropy, 

temperature 

u,v,w dimensionless velocity components along X-, Y-, and Z-axis ,  respectively 
(actual velocity components divided by V,) 

V vel0 city 

x,y,z Cartesian coordinate axes (fig. 1) 

X,Y ,Z coordinates along X-, Y-, and Z-axis ,  respectively 

a angle of attack 

p = cos-l(sin x cos a) 

r complement of angle between the surface normal and the s t ream direction 

Y ratio of specific heats 

A incremental 

V gradient vector operator 

6 flow deflection angle 
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defined in  figure 3 

[-coordinate of upper surface of airfoil at geometrical plane of symmetry [S ,max 

P density 

+z = tan-l(sin x tan +1) 

X 

w dimensionless vorticity vector 

x, * 

Subscripts: 

L leading-edge condition 

N 

angle between Y-axis and leading edge of airfoil (see fig. B1) 

c ross  multiply, dot multiply 

normal to the leading edge 

n normal to the shock 

0 reference condition 

S at the surface 

t tangential 

0 behind the shock 

I first given condition 

00 f ree  s t ream 
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+,- characteristic directions 

x,y,z,q,t partial differentiation with respect to x, y, z,  7, and 5 

Accent: 
A unit vector 

FUNDAMENTAL EQUATIONS 

A rectangular Cartesian coordinate system with origin at the vertex of a delta wing 
is shown in  figure 1. The X-axis is directed from the origin along the axis of symmetry 
of the lower surface of the wing. The upper surface of the wing is fixed by the profile 
normal to the X-axis; lenticular and parabolic profiles a r e  used in the numerical calcula- 
tions to be presented. 
hence the upper and lower wing surfaces a r e  independent. 

Only attached leading-edge shocks are considered herein, and 

Flow Equations 

For  steady flow of an ideal gas with a uniform free stream, the continuity, momen- 
tum, and energy equations may be written in the form (ref. 16) 

v * (pU) = 0 

w x u = -  vs 
2 v, 

u . v s = o  

where U is a dimensionless velocity vector, actual velocity divided by free-stream 
velocity V,. 

Flow Equations in  Cartesian Coordinates 

The momentum and energy equations (2) and (3) may be written in Cartesian coordi- 
nates i n  the form 

w(uz - wx) - v(vx - uY) = a 2 sx 

utx - uY) - w(wy - vz) = a 2 sy 

v(wy - vz) - u(.. - wx) = a 2 sz 
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usx + vs + wsz = 0 Y 

S 

SO 

a 

dimensionless velocity components along X-, Y-, and Z-axis, actual velocity 
components divided by Vco 

dimensionless entropy, s - so - - In PIP, 
Y(Y - 1)CV y(y - 1) py/pmy 

reference entropy 

dimensionless sonic velocity, actual sonic velocity divided by V, 

Flow Equations in Conical Coordinates 

In dimensionless conical coordinates the position of a straight line directed from 
the apex of the conical body is determined by the coordinates q = y/x and 5 = z/x. The 
partial-derivative operators in the X,Y,Z axis system may be written in conical coor- 
dinates as follows: 

I 

J 
By using the partial-derivative operators of equations (5), equations (4) may be 

written in  conical coordinates (ref. 4): 

(qu - v)sq + (tu - w)sg = 0 ( 6 4  

Only the last three of equations (6) are independent, and equation (sa) is not used. 
As shown in appendix A, the continuity equation (1) may be written in  conical coordinates 
in  the form 
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Boundary Conditions 

The boundary conditions are given at the body surface and at the shock (details a r e  
shown in appendix B). The boundary 
components vanish. Therefore, 

The boundary conditions at the 

condition at the body is that the normal velocity 

(8) 

shock can be found by applying the Rankine-Hugoniot 
relations across  the shock. 
tious plane shock which is tangent to the body shock is introduced. The flow properties 
across  this shock will match those behind the body shock at the point of tangency. In a 
plane which is normal to the fictitious leading edge, and hence the fictitious shock plane, 
the angle E between the fictitious shock plane and the plane of the undisturbed flow may 
be determined for known values of the free-stream Mach number Mm, the angle of attack 
a, the flow deflection angle 6, and the sweep angle x, from the following equation: 

To facilitate the application of the shock conditions, a ficti- 

(1 + 2 Mm2sin213)tan3~ - (MW2sin2p - l)cot(q 6)tanZe 

Y + M, sin2p tan E + cot a1 + 6 = o 
+ ( 2  1+- 2 ,  0 (9) 

Once the angle E is determined, the velocity components behind the shock and the 
entropy change across  the shock can be found. 

The velocity components behind the shock for the problem of decelerated cross  flow 
(wing problem) a r e  

cos x cos 6 sin p cos E u = cos p sin x + 
cos(€ - a1 - 6) 

sin x COS 6 sin p cos E v = -cos p cos x + 

s in  6 s in  p cos E W =  
cos(, - a1 - 6) 

Similarly, for the problem of accelerated cross  flow (fin problem), the velocity 
components behind the shock are in  the form 
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cos x cos 6 s in  p cos E u = -cos p sin x + 
c o s t  - 01 - 6) 

sin x cos 6 sin p cos E v = cos p cos x + 
cos(€ - “1 - 6) 

sin 6 sin p cos E W =  
cos(€ - 01 - 6) 

The entropy change across  the shock is calculated from 

J 
vs = s - s, 

CHARACTERISTIC AND COMPATIBILITY EQUATIONS 

Characteristic and compatibility equations a r e  derived in  detail in  appendix C. In 
addition to boundary conditions, they constitute the necessary requirements for actual 
computations. 

Along a stream surface a characteristic is given by 

For this characteristic there is one compatibility relation due to constancy of 
entropy along stream surfaces: 

ds = 0 (14) 

The second compatibility equation along stream surfaces may be written in the 
form 

The remaining 
have slopes given by 

two characteristics, one above and one below the s t ream surface, 
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where 

The compatibility equation corresponding to the two characteristics is 

b l  du + b2 dv + b3 dw + b4 ds  = 0 

where 

- w) - (qu - v g ]  - azq(5v - qw) - qu 

METHOD OF COMPUTATION 

The application of the method of characteristics to compute conical flow fields con- 
sists of the repeated use of three basic computing processes (one each for the shock 
point, the body point, and the general field point) proceeding inward from the leading edge 
with given initial conditions. With reference to figure 2, the initial conditions a r e  estab- 
lished by approximating the leading portion of the wing by a swept wedge, tangent to the 
wing at qI. The oblique-shock solution, equations (12) and (10) or (ll), then gives the 
flow conditions at the initial station qI. 

Shock Point 

To determine the (-coordinate of the shock at q = qI + Aq, as a first approxima- 
tion the shock at qI is extended to qI + Aq to establish the point S. The shock rela- 
tions give the first approximation to the flow properties at S, and the characteristic SA1 
establishes the point Ai .  The flow at point A1 is known by interpolation, and the com- 
patibility relation, equation (18), must be satisfied for the characteristic SA1 as well as 
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the shock conditions at S .  An iteration on the shock angle at S, with averaged coefficients 
i n  the compatibility equations, allows determination of the correct shock angle and the 
correct  locations of S and Ai ,  and thence the flow properties at point S. 

Body Point 

The point AP on the characteristic APPp intersecting the body at y = y~ + Ay can 
be found by interpolation. The compatibility relation for ApPp, the two compatibility 
relations for the streamline characteristics (eqs. (14) and (15)), and the boundary condi- 
tion (eq. (8)) can then be solved for the flow conditions at Pp. 

L 

General Field Point 

The present calculations were performed by computing conditions from the shock to 
the body. After the point A1 is established, the characteristic A l P l  locates the first field 
point PI. The streamline P l B l  and the characteristic C l P l  through P i  can be determined 
by interpolation of the given, or known, conditions on The compatibility equations for 
the characteristics A l P l  and C l P l  and the two compatibility equations for the streamline 
P l B l  can then be solved for the flow conditions at point Pi. This process is repeated for 
the point Pa, and so on, until a point Pf is reached with the characteristic PfCf intersecting 
the initial data line q = 71 (or the current known data line) below the body surface. The 
body point is then calculated; the flow conditions a r e  then completely specified along the 
line y = yI + Ay, f rom the shock to the body. This new set of data can be used to establish 
the conditions at the next station, y = q1 + 2Aq. The computations thus proceed over the 
wing, or fin, until the sonic condition is obtained, o r  the trailing edge is reached. 

yI. 

. 

The method as presented with iterations and quadratic interpolations for the flow 
properties is accurate to second order (i.e., the truncation e r r o r  is the order of the mesh 
s ize  cubed). This computational method was programed in  FORTRAN language for com- 
puting on an electronic digital computer. 

APPLICATIONS 

Accelerating Cross  Flows (Fin Problems) 

Calculated pressure distributions for fins with circular-arc profiles are shown in 
figure 3. The results a r e  given in  te rms  of the ratio of the local surface pressure coef- 
ficient Cp to the maximum pressure coefficient C p , ~ ,  which occurs at the leading edge. 
The fin geometry is defined by the sweep angle x and the initial flow deflection 6~ in  
a plane normal to the leading edge. Calculations for M, = 6, 10, and 30 were performed 
for fins with x = 30° and 6~ = 5' and 20'. The results are presented up to the geomet- 
r ical  plane of symmetry of the fin, = 180' ( e  is defined in  fig. 3), although actual cal- 
culations were carried beyond that. Calculations can be carried close to the trailing edge 
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with much finer meshes and longer computing time. Included in  figure 3 are calculations 
based on a shock-expansion method for conical flows which was obtained in  reference 17. 
The agreement of the two methods is exceptional, considering the simplicity of the shock- 
expansion approach. Because earlier studies have shown that the two-dimensional shock- 
expansion method works best at high values of y ,  a cursory examination of the effect of 
y was made. In figure 4 calculations a r e  shown for a fin with a circular-arc profile, 
a = Oo, 6~ = 30°, x = 60°, and M, = 30 at y = 1.667, 1.400, and 1.100. The shock- 
expansion method works best for y = 1.400 and the poorest agreement is for y = 1.100. 
These results are consistent with the y-effect observed in  the prediction of two- 
dimensional flows by two-dimensional shock expansion. 

- 

For two-dimensional and axisymmetric flows, the application of the shock-expansion 
method is greatly simplified because of a closed-form relation between the surface pres- 
su re  and the local surface inclination. For conical flows such a relation is not known and 
solutions can be obtained only by quadrature; more easily obtained approximate solutions 
a r e  desirable. Newtonian theory is often used by the practicing engineer in  the analysis 
of complex three-dimensional configurations. 
an assessment of the applicability of Newtonian theory to three-dimensional hypersonic 
flows. Indeed, there has been no assurance that the usefulness of Newtonian theory for 
two-dimensional and axisymmetric flows should prevail for three-dimensional' flows. In 
figure 5, results obtained from Newtonian theory have been included for comparison with 
results obtained by the method of characteristics, the shock-expansion method, and a s t r ip  
theory. 
and two-dimensional shock-expansion theory. 
extension of the generalized Newtonian theory (ref. 18) and the pressure ratio is given by 

There are too few exact solutions to enable 

The last of these is a two-dimensional approximation using the circular profile 
The Newtonian theory used is a logical 

where, r is the complement of the angle between the surface normal and the s t ream 
direction, and C p , ~  is the pressure coefficient at the leading edge, where I? = rL, 
obtained from the oblique-shock relations for the tangent swept wedge. The ratio of the 
surface pressure to leading-edge surface pressure was calculated at y = 1.667 and 1.400 
for a fin with b~ = 20°, x = 30°, and M, = 30. Strip theory always underestimates the 
pressure and the Newtonian theory gives poor results i n  the low-pressure regions (a gen- 
eral failing of Newtonian theory; see ref. 19). 

In figure 6 are shown comparisons at M, = 6.85 between the method of character- 
ist ics,  shock-expansion method, and unpublished experimental data obtained by M. H. 
Bertram at the NASA Langley Research Center. In these tests the ratio of wall tempera- 
ture  to total temperature was in  the range of 0.6 to 0.8, the free-stream Reynolds number 

I 
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was 0.31 x 106 per inch (0.12 X 106 per cm), the root-chord length was 4.8 inches 
(12.2 cm), and the semispan was 2.4 inches (6.1 cm). The local chord was 2.38 inches 
(6.05 cm) at the section in  which the pressure orifices were located. The profile of the 
surface consists of two parabolas in  the YZ-plane, tangent at r] = @/2; namely, 

2 5 = q tan ~ ( 7 7  cot x - 0.5) 

where q = 0.1 for @/2 < 7 5 6 and q = 0.05 for  0 5 7 < @/2. The maximum * 

thickness occurs at 7 = p , 2 .  In figure 6, x = 30°, and 6~ 11' at CY = Oo. The two 
theoretical solutions agree well, and the difference between the experimental data and 
theory can be attributed to the viscous boundary-layer displacement effects (ref. 20). At 
CY = 100 the theory and experimental results are quite close. 

1 

Decelerating Cross  Flows (Wing Problems) 

In the case of a delta wing where the free-stream velocity vector lies in  the plane 
of symmetry, the cross  flow is supersonic at the leading edge and decelerates to sub- 
sonic and ultimately to zero at the plane of symmetry. The present calculations can be 
used only in  the region of supersonic cross  flow, but this flow region can constitute a 
major portion of the flow field. (For example, for a circular-arc wing with Mw = 30, 
GN = 20°, and x = 30°, about 90 percent of the wing flow field can be computed.) 

are 6~ = 9O18' and x = 50'. The shock shape and the pressure ratio of both the shock 
and the wing surface are given for M, = 4.0 and CY = Oo, 5O, and loo. For this case 
the method of characteristi'cs can be used to compute a major portion of the flow field, 
until the cross  flow approaches sonic as shown in figure 7(a). As the angle of attack 
increases,  the portion of supersonic cross  flow decreases. A line of constant cross-flow 
Mach number of 1.08 for the case of CY = 0' is also shown in figure "(a) to give some 
idea of the Mach cone which separates the supersonic and subsonic cross  flows. In ref- 
erence 21 calculations based on the method of lines, giving a solution for the entire flow 
field, a r e  presented for the same conditions; these are shown in figure 7(b). The agree- 
ment of the two methods is excellent. The pressure ratio calculated on the basis of 
Newtonian theory is also shown; it has lower values in  the supersonic region than the 
other two methods. 

Calculations for a circular-arc wing are shown in figure 7. The wing parameters 

An additional comparison of the method of reference 21 with the method of charac- 
terist ics is given in figure 8, which shows the surface pressure coefficient on a circular- 
arc wing with x = 50°, 6~ = 20°, CY = loo, and M, = 8.1. Also included in  figure 8 is 
the shock-expansion method. All the methods show excellent agreement. The shock 
shapes predicted by the method of characteristics and the method of lines also are 
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compared and they agree closely. In reference 21, the solutions by the present method 
and the method of lines are compared and verified with experimental data. 

CONCLUDING REMARKS 

An analytical technique using the method of characteristics has been described for 
flow predictions of accelerated and decelerated supersonic cross flows over a conical 

analytical results. 
< body. Results obtained by this method agree well with experimental results and other 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., April 28, 1970. 
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APPENDIX A 

CONTINUITY EQUATION IN CONICAL COORDINATES 

The entropy function can be written i n  the form 

and enthalpy may be written in  the form 

Combining equations (Al) and (A2) gives 

where 

When equation (A3) is substituted into equation (1) in  the body of the paper, the con- 
tinuity equation becomes 

= o  

Since U VS = 0, then 

u V[f(S,3 = y(y - l)f(s)U - vs = 0 

Thus 

but 
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APPENDIX A - Concluded 

and combining equations (A4) and (A5) gives 

2 a 2 v .  u - u -  VU^ = o 

Equation (A6), the continuity equation, may be written in conical coordinates as 
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APPENDIX B 

BOUNDARY CONDITIONS 

The boundary condition at the body is that the normal velocity components vanish. 
If the equation at the conical surface is g((,r]) = 0, then the boundary condition at the 
body is 

@ 

u . v g = o  
I vgl 

or  I1 

The boundary conditions at the shock can be found by applying the Rankine-Hugoniot 
relations across  the shock. The equations presented herein are extensions of those given 
in reference 4 for the conditions at the leading edge of a flat delta wing; they are general- 
ized here to apply to any location along the shock contour. To help in  understanding the 
relations in  front of and behind the shock plane, a geometrical layout is constructed as 
shown in figures B1 and B2. To facilitate the application of the shock conditions, a 

leading edge 

L w  Body profile 

the 
flow 

M 

Figure B1. - Geometrical layout. 
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APPENDIX B - Continued 

fictitious plane shock which is tangent to the body shock is introduced (plane OFM in  
fig. Bl). 
The equation of the fictitious shock plane is (by geometry) 

The flow properties across  this shock will  match those across  the body shock. 

where 
mal to the fictitious leading edge (in plane FHG). 

+1 is the slope of the fictitious shock plane measured in  the plane which is nor- 
4 

The angle between the direction of the undisturbed flow and the fictitious leading 
a edge, p, and the angles a1 and $2 may be obtained through analysis of the geometry: 

L F  

i i 

( b )  

Figure B2.- Velocity components with rotating axes. 
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APPENDIX B - Continued 

cyl = tan-1 - (2 ;) 
tan $I2 = sin x tan $I 035) 

where $2 is the slope of the shock plane in  the plane normal to the X-axis. 

The plane FHN is redrawn in detail in  figure B2(a). The free-stream velocity com- 
P 

9: ponent in  the direction of HN is V, sin p, and the normal and tangential free-stream 
velocity components are designated as Vn,, and Vtym, respectively. The resultant, 

Vt, respectively. 
normal, and tangential velocity components behind the shock a r e  denoted by V,, Vn, and 4) 

At the leading edge of the fictitious-plane shock, the shock wave must satisfy the 
relation (ref. 22) 

where a* is critical sonic velocity. 

From figure B2 it is easily seen that 

Vt,m = V, s in  p cos E (B 7) 

Vn,m = V, s in  p sin E 

where E = $1 + al represents the angle between the fictitious shock plane and the plane 
of undisturbed flow. 

Since 
vt = Vt," 

where 6 is the angle between the cross-flow velocity and the XY-plane measured nor- 
mal to the fictitious leading edge. 

The energy equation may be written 

2 
or 
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APPENDIX B - Continued 

where V* and a* are critical velocity and critical sonic velocity. 

Combining equations (B'i'), (B6), and (B10) yields 

If tan($ - 6 - a$ is expanded, V,/a, is replaced by M,, and both sides of the equa- 
tion are divided by tan 6 -I- a1 , the result  is 0 

Y + M, sin2p tan E + cot 6 + al = o + ( 2  1+- 2 ,  0 
For known values of M,, a, 6, and x, equation (B11) determines the angle E; 

the velocity components behind the shock plane and the entropy change across  the shock 
can then be calculated. 

To obtain velocity components behind the shock, the reader is again referred to 
figure B2. The coordinate axes jf ,kf and j",kf' are parallel and normal to HG and HJ, 
respectively. The coordinate axes i , j  a r e  parallel to the X-axis and Y-axis; the axis if  
is in the direction of the fictitious leading edge, and the axis j f  is normal to the axis if  
and is in  the direction of HG, which coincides with the XY-plane (see fig. Bl). 

By coordinate transformation, the unit vector in the direction of the velocity V, 
behind the shock is 

V, sin p cos E 
V, = 

cos(€ - 6 - CYl) 

Equations (B12) and (B13) then define the magnitude and the direction of the velocity 
V, behind the shock. 
and the free-stream velocity component tangential to the leading edge, 
V, cos p i s in  x - j cos x). 

(wing problem) are then 

The total velocity is simply the vector sum of this velocity vector 

A t 
The velocity components behind the shock for the problem of decelerated cross  flow 
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APPENDIX B - Concluded 

1 cos x cos 6 sin p cos E u = cos p sin x + 
cos (E - 6 - q) 

\ sin x cos 6 sin p cos E 
v = -cos B cos y + 

sin 6 sin p cos E W =  
c o s t  - 6 - al) J 

Similarly, for the problem of accelerated cross  flow (fin problem), the velocity 
components behind the shock are 

--I 

cos x cos 6 s in  p cos E u = -cos p sin x + 
cos(€ - 6 - al) 

sin x cos 6 sin p cos E 
v = cos p cos x + 

cos(€ - 6 - CYl) 

s in 6 s in  p cos E 
W =  

cos(, - 6 - q) 

The entropy change across the shock is calculated from (ref. 22) as 
t- 7 
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APPENDIX C 

CHARACTERISTIC AND COMPATIBILITY EQUATIONS 

Any conical surface may be expressed as a function of the two coordinates 5 
and V: 

g((,r]) = constant 

dg = g de + gV dV = 0 5 

The unit normal to the surface is 

Maslen (ref. 15) shows that the cross-flow velocity component - that is, the component 
normal to a ray from the apex - governs the type of partial differential equations in  con- 
ical flow. For supersonic c ross  flow he shows that the characteristic surfaces are 

U - C = a  and U . f i = O  

where U - can be expressed as 

For  the case where U fi = 0 the characteristic surface is given by 

which is a surface consisting of streamlines. 

From equation (6d) in  the body of the paper, the compatibility relation is 

ds  = 0 (C3) 

I 

This, of course, expresses the constancy of entropy along streamlines. The character- 
ist ic (C2) is a double characteristic since multiplying equation (6b) by VU - v and equa- 
tion (6c) by eu - w and adding them gives 
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APPENDIX C - Continued 

It is found by inspection that equation (C2) defines a characteristic for equation (C4) for 
which the following compatibility relation applies: 

d u + q d v + t d w = O  (C 5) 

A 

The equation U - n = a is quadratic, and the two roots yield the slopes of two 
characteristics, one above and one below the s t ream surface: 

a1 * 
(:)* = a2 

These are the projections of the Mach cones in  the cross-flow direction. 

The remaining compatibility relations are found as follows. Equation (6d) and 
ds  = sq dq + s t  d[ yield the partial derivatives of s in  t e rms  of total differentials: 

where 

Multiplying equation (C4) by kt + qvt + twg)d.$ yields 

d5 - 1 dr7 
5 d s  J sq = - 

dq and then adding and substracting the quantity 

where 
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APPENDIX C - Continued 

vt 
X =  vrl 

wt 
wT 

Substituting equations (C9) into either equation (6b) or equation (6c) yields 

B =  

where 

The continuity equation (7) may be written in the form 

- I." - ( tu  - w)2Jwt + (vu - v)(& - w) = 0 

or 

where 

a1vg + a2vq + a3w5 + a lw  = G r7 

Since 

where 

A =  

equations (C 15), equation (C 11), and equation (C 13) can be written in  matrix form as 

"1 
1 

dt 
0 

a2 
0 

drl 
0 

a3 
0 
0 

dt 

A x = B  

G 

Q 
dv 
dw 



APPENDIXC - Concluded 

The determinant of the coefficient matrix A is 

IA] = a2 d t 2  - 2a1 d( dr] + a3 dv2 (C 18) 

When the determinant vanishes, it gives the slope of the characteristics, equation (C6). 
To find the compatibility equations, the determinant 

"1 a2 a3  G 
1 0 O Q  

d( dr] 0 dv 
0 0 d( dw 

is equated to zero,  o r  

d5 dv dw 
a2 5 - a3 - a = O 

G - a1Q + - a2Q - 
dr7 

Substituting values of G and Q gives 

b l  du + b2 dv + b3 dw + b4 ds  = 0 

where 

b l  = -a2((v - r]w) - (a1 - a2$ 

- a2q((v - qw) - qu(1.1 - a2 3) 
dv 

1 

Equation (C20) is the compatibility equation, which is the condition to be fulfilled along 
any characteristic given by equation (C6). 
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