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ABSTRACT

This report summarizes work performed on NASA Grant No. NSG 1116
during the period of January 1, 1977 through December 31, 1978. The
work during this period has concentrated on including multi-sun effects,
high temperature effects, and electron irradiation effects into the
computer analysis program for hecerojunction and graded bandgap solar
cells, These objectives have been accomplished and the program is now
available for such calculations,

This report is written in the form of three manuscripts which have

been prepared for publication, Details of the device modeling and

computer analysis techniques used to study solar cells have been contained

in earlier annual reports on this grant and are not repeated here.
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EFFECTS OF TEMPERATURE AND INTENSITY
ON THE OPTIMUM BANDGAP OF AlGaAs SOLAR CELLS*

J, P, C, Chiang and J. R, Hauser
North Carolina State University
Raleigh, NC 27650 —

ABSTRACT

The optimum bandgap for single junction solar cells operated at AMO,
1 sun conditions and at 300°K is known to occur at a value close to that
of GaAs. This work shows that with increasing temperature and/or
increasing optical intensity the optimum bandgap moves to larger values.
Detailed computer calculations for AlGaAs cells are presented which

illustrate the optimum bandgaps in this material at various temperatures

and solar intensities.

*This work was supported by a NASA Langley research grant.



1., INTRODUCTION

The optimum energy bandgap of single junction solar cells has been

investigated in several previous papers [1-3]. Early studies of solar cells

based upon simple device models have predicted that the optimum energy
bandgap is around l.4-1.6 eV for AMO, 1 sun, room temperature speratioca. :
More recent detailed numerical calculations on specific semiconductors
of GaInAs and AlGaAs have shown that the AlGaAs/GaAs heterojunction cell i

with an active cell bandgap of about 1.44 eV is very close to the optimum
bandgap [4]. i

The present work discusses detailed calculations of heterojunction
solar cell performance at increasing temperature and illumination levels.
In order to make the analysis as realistic as possible, the specific

ternary III-V alloys Gal_xlnxAs and Al xGaxAs have been selected to be !

1-
studied. The Gal_xInxAs provides a semiconductor with bandgaps below
that of GaAs and All-xGaxAs provides values above that of GaAs. From
these studies the optimum bandgap for heterojunction type solar cells
at elevated temperature and light intensity can be identified using a

practical set of material parameters,

2. DEVICE MODELING
The calculations of this work were made using a detailed numerical
simulation of heterojunction solar cells. Details of the device modeling
and numerical techniques have been previously discussed [5,6]. The
computer analysis program solves the basic device differential equations
appropriate to heterojunction or graded bandgap solar cells providing

data on the terminal properties of solar cells such as open circuit voltage,
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short circuit current, £ill factor and maximum efficiency. Input to the
program is a detailed set of material and device parameters from which
the material properties of any desired Al

Ga As or Ga, _In As alloy
X X X X

1- 1-

can be determined.

The additional modeling which is pertinent to the present work is
the manner in which temperature effects are incorporated into the model.
For operation around room temperature, both the direct and indirect band-
gapsof the binary semiconductors AlAs, GaAs and InAs were assumed to be

decreased linearly with temperature as

£, = €, - (1T, €8

where é;o is the bandgap at T=T (300°K). Table I gives a list of the
temperature coefficients used in the analysis, For the ternary alloys,
a was assumed to vary linearly with composition.

The temperature dependence of mobility was taken to be of the form
m
H= uo(T/To) ’ (2)

where Mo is the mobility at temperature To(300°K) and m is an experimentally
measured constant. For holes and direct bandgap electrons the temperature
dependence was assumed to be that of GaAs with m = -2.3 for electrons [7,9]
and m = =2,0 for holes [9]. For the indirect bandgap electrons m = -2,3,
which has been reported for AlAs, was used [7]. While these temperature
dependences may not be exact for all alloy compositions, optimum solar

cells have bandgaps close to that of GaAs and thus this approach should

give a good approximation. Also the indirect bandgap 1s only important




Table I, Bandgap temperature coefficients

a(eV/°K)
Material Direct Bandgap Indirect Bandgap
-4 -4
InAs 3.5x10 [7] 4.0x10 [71
GaAs 4.3x107% [8,9] 4.0x107% [7]
AlAs 4.3x10"% [10] 4.06107% [7]

for All_xGaan compositions near AlAs and this is the justification for
using the AlAs data for the indirect bandgap.

For the purpose of this work, minority carrier lifetime was assumed
to be independent of temperature. There is no intrinsic reason to assume
this is true, however insufficient data is available on solar cell
quality ITI-V material to more accurately model lifetime at this time,

The specific solar cell device structure which has been studied is
shown in Figure 1. It consists of a p-type base layer of approximately
125 pm in thickness., A wide bandgap All-xcaxAs window layer is present
at the top of the cell. The p-n junctica is taken to be at some small
distance below the heterojunction. Finally an Si0 antireflecting layer
is present on the front surface of the cell.

From previous studies of such cells with a GaAs base layer and an
All_xGaxAs window layer, it has been found that the optimum antireflecting
layer thickness is about ,07 uym, and the optimum p-n junction depth is

about 0,3 um below the window layer [5,6]. These values were used in the

present study along with a window layer thickness of 0.1 um, While the

i
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optimum window layer thickness is less than 0.1 um this value was selected
as a realistic practical value. While the selected junction depths may
not be optimum values for all alloy compositions, temperatures and/or
light intensities, it was decided to keep these fixed in order to study
only the effects of temperature and solar intensity on the optimum bandgap.
The composition of the window layer was fixed during this present
study at 100% AlAs. This is somewhat larger tham the value used in most
present day AlGaAs/GaAs cells. This represents the ideal apper limit on
the bandgap of the window layer using AlGaAs, However compositions of
90% AlAs have bandgaps which are only slightly less than the pure AlAs

and do not degrade performance significantly.

3. EFFECTS OF TEMPERATURE ON PERFORMANCE

The first calculations to be discussed are for conventional type
heterojunction cells with pure GaAs as the base layer semiconductor.
These illustrate the effects of temperature on heterojunction cells and
provide a base of comparison for cells with other alloy compositions.

Figure 2 shows the calculated dark J-V characteristics for a GaAs
base layer cell at 300°K and 500°K. The dark current increases by over
four orders of magnitude (note scale change) for 500°K operation. At
either 300°K or 500°K the region of operation (near Isc) is within a
current region where the device exhibits near ideal diode behavior. The
m=1 or 2 values in Figure 2 refer to the diode factor m in an equation of
the form

J = Jo exp(qV/mkT), (3)
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The 500°K cu:#e shows a transition to the high injection ragion of operation
at around 0,8 volt. This region becomes important when such a cell is
operated at both high temperature and multi-sun illumination conditions as
will be discussed in the next section.

The terminal J-V characteristics under 1 sun, AMO illumination for the
GaAs cell are shown in Figure 3. As temperature increases, the open circuit
voltage decreases, short circuit current increases, the fill factor decreases
and efficiency decreases. All of these changes are expected except perhaps
the increase in short circuit current which deserves some discussion. The
increase in Jsc is due mainly to the decrease in bandgap of the semiconductor
with increasing temperature. With the temperature dependence of mobility
andldiffusion coefficient used in the modeling, the diffusion length will
decrease with temperaiure, since D a Tm+l and m <-2.0., However this
decrease is not sufficient to offset the increase in absorption and Jsc
increases.

Figure 4 show the variation of the major solar cell parameters with
temperature for the GaAs base layer cells. The predicted decrease in Voc
is 2.16 mV/°K. The increasing short circuit current with increasing
temperature partly offsets the decreasing fill factor and the resulting
efficiency decreases only slightly faster than the open circuit voltage
décreases.

In the next series of studies the terminal solar cell device
parameters were investigated as a function of the composition of the
base layer of the heterojunction cell, The window layer was kept fixed

in composition but Gal_xlnxAs or Al xGaxAs was substituted in the model for

1-
the material in which the p-n junction is located. The results of this
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study are shown in Figure 5 for temperatures of 300°K and 500°K, As has
previously been discussed [4], the peak ~/ficiency at 300°K occurs
almost exactly at the GaAs base layer composition. As the composition
is varied from OX AlAs to increcasing percentages, the open circuit voltage
increases but the short circuit current decreases. These opposite changes
give rise t~ a rather flat peak in efficiency.

At 500°K the effic.ency peak is seen to be shifted ro higher Al‘s
percentages and consequently to higher bandgaps. The peak efficiency
occurs st about 20-22% AlAs which corresponds to an energy bandgap of
about 1,70-1.73 eV.

Higher temperature of operation thus causes a shift of the optimum
bandgap to higher values. This is seen in Figure 6 for three different
temperatures. At 400°K the AlAs composition is approximately half that
for the optimum composition at 500°K. At 400°K the improvement in
efficiency over that achieved with GaAs as the base layer material is
about 0.3 percentage point which may be too small to justify the added
complexity of an AlGaAs base layer cell. At 500°K the enlanced efficiency
is about 1,3 percentage points above a GaAs cell and represents a signifi-

cant increase,

4, EFFECTS OF SOLAR INTENSITY ON PERFORMANCE
The optimum semiconductor bandgap or compeusition for the base layer
is alsc a function of solar intensity at which the cell is to be operated,
This is shown in Figure 7 where peak efficiency is shown .:s a function of
composition at three different solar intemsities and at 500°K. The
1 sun curve is the same as that in Figure 5 and shows a peak in the range
of 20-22% Al :5. At 100 and 500 suns the peak efficiency occurs at a

lower compo: tion of around 15~167 AlAs,
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A simple physical explanation of the decrease in optimum bandgap with

increasing intensity is not easily obtained. From simple device models

one expects the short circuit current to increase linearly with intensity
at a fixed temperature and the voltage to increase logarithmatically -
with increasing intensity. Both of these increases were found to be
approximately valid from the exact computer analysis,

The £ill factor is also expected to increase because of the increasing
open circuit voltage. This expected variation of fill factor was not
found, however, in the numerical calculations. The fill factor was in

fact found to peak at a solar intensity of about 100 suns and then to

decrease at higher solar intensities. This is shown in Figure 8 for two

different base layer compositions of 0% and 25% AlAs, Also shown in
Figure 8 are peak efficiency curves for the same compositions. The
efficiency is seen to peak at about 300-500 suns and then decrease because
of the rapid decrease in fill factor.

The decreasing fill factor can be traced to high injection effects
occurring in the cell at high solar intensities and high temperature and its
detrimental effect on efficiency. Referring back to Figure 2 it is seen
that at 500°K, high injection effects with an m factor of about 2 begin
to occur at a current density of about 3 amp/cm2 which is about two orders
of magnitude above the Jsc line for 500°K. Thus at about 100 suns and
500°K the cell begins to operate under high injection conditions and this

is responsible for the low fill factor above about 100 suns.
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5. SUMMARY AND CONCLUSIONS

In this work the effects of temperature and illumination intensity
on the optimum base layer composition of AlGaAs solar cells has been
investigated. A numerical computer program has been used to model in
detail the properties of specific solar cell structures, The thicknesses
of the various solar cell regions have been taken as fixed in this study
and consequently the calculated efficiencies may not be the absolute maximum.
However, the calculated results are expected to be close to the optimum
values.

The optimum bandgap shifts to larger values and the optimum AlGaAs
material shifts to larger AlAs percentages as the operating temperature

increases, At 500°K 1 sun operation the optimum bandgap was found to be

about 1,7 eV and to occur at 20-22% AlAs.

One of the most important results of this work is the finding that maximum
efficiency peaks as a function of solar intensity. For 500°K operation the
peak was found to occur at albout 500 suns. This peak arises from the onset
of high injection effects at high temperature and high intensities, In an
actual cell other factors not considered such as surfa.e layer sheet resistance
can also give limiting efficiency effects, However, high injection is an
intrinsic limiting effect which must be considered for high temperature,

high intensity solar cells,

e
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FIGURE CAPTIONS

Hetercjunction Solar Cell Device Structure.

Dark I~V Characteristics for GaAs Base Layer Cell at Two
Temperatures.

Effects of Temperature on Light J-V Characteristics for GaAs
Base Layer Cell.

Dependence of Major Solar Cell Parameters on Temperature.
Solar Cell Parameters as a Function of Base Layer Composition.

Peak Efficiency as a Function of Composition at Different
Temperatures.

Peak Efficiency as a Function of Base Layer Composition for
Different Solar Intensities,

Changes in Peak Efficiency and Fill Factor as a Function of
Solar Intensity.




OPTIMIZATION OF AlGaAs SOLAR CELLS FOR RADIATION EFFECTS

J.P.C, Chiang and J.R. Hauser
North Carolina State University
Raleigh, NC 27650

ABSTRACT

In this work some effects of radiation on the design of high
efficiency AlGaAs solar cells are discussed. The optimum bandgap
and composition of AlGaAs for maximum end~of-life efficiencies are
discussed for concentration cells operating at high temperature.
It is found that the optimum bandgap shifts to slightly larger values
after radiation. An optimum p-n junction depth below the heterojunction
of about 0.3 um is found both before radiation and after a radiation dose

of 1016 electrons/cmz.
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1. INTRODUCTION
The AlGaAs/GaAs heterojunction solar cell has so far demonstrated
the highest conversion efficiency of any single junction solar cell -
[1-3]. Previous studies have shown that such cells are very close to
the optimum energy bandgap value for single junction cells [4,5]. .
AlGaAs/GaAs heterojunction cells also offer the patential for high ; o

concentration and/or high temperature operation. Concentration ratios
as high as 500-1000 are presently being considered for such cells [6-9].

For operation in the space enviromment, the long term effects of
electron (or other particle) irradiation are important design considera-
tions. The average solar cell efficiency over some useful life expactancy
is more important than the initial efficiency. In some space applications
the end-of-1ife efficiency is the most meaningful efficiency value.

The high efficiency AlGaAs/GaAs solar cells are rot presently used
in space. However, they are being considered for a number of space
applications. The solar space power station represents one potential
large scale application of such cells. Because of the high cost of AlGaAs
solar cells, they are most likely to be used in concentration systems
with concentration factors on the order of several hundred.

Because of the large solar flux under concentration, high temperature
operation of concentrator cells must alsoc be considered. The temperature
of a concentrator cell obviously depends on the method of cooling and the
thermal resistance between the cell and any heat sink, The tradeoffs

between the cost of heat removal equipment and loss of efficiency at

“ .
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elevated temperatures are complicated system design factors. The approach

taken in this work has been to explore optimum solar cell design at a high
assumed operating temperature of 500°K. This may be too high for use in a
rractical solar cell application. However, the optimum solar cell design
parameters found at 500 suns, 500°K operation are sufficiently similar to
those found for 1 sun, 300°K operation that confidence can be gained in
the fact that AlGaAs/GaAs heterojunction cells can be designed which will
give near optimum performance over a wide range of concentration factors

and temperatures.

2, SOLAR CELL MODELING

The solar cell model used in the present calculations 1s shown in
Figure 1, The p-n junction is located slightly below an n-n heterojunction,
with the wide bandgap window layer providing a low surface recombination
boundary to the underlying narrower bandgap solar cell. The window layer
was taken to be AlAs and with a thickness of 0.1 um in order to minimize
optical absorption in this layer. The antireflecting layer was taken io
be $10 with an optimum thickness of 700; [10,11]}.

The material in which the p-n junction is located was taken as
All_xcaxAs w1ith the composition varied to select the optimum bandgap value
for maximum efficiency. The thick base layer of the cell was taken to be
p~type material. This was selected because of the much longer diffusion
leugth for electrons than for holes.

The modeling of the material parameters as a function of composition
and t-mperature has been discussed elsewhere [10,11]., For the effects of

radiation on lifetime and diffusion length, the following equations were used:

SRS B . I e
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where T, and Lb are the unirradiated lifetime and diffusion length and
¢ is the total electron radiation dose. The value of KL - 7::].0-s has

been used in the calculations [12]. This value is the measured value for
GaAs solar cells at room temperature., Since the optimum cell designs have
AlGaAs compositions near that of GaAs, the use of the GaAs value should be
reasonably accurate. A more serious limitation is the use of this value
for cellsoperating at high tempsratures (500°K for exumple). As opposed

to Silicon, irradiation effects in GaAs are known to show annealing effects
at fairly low temperatures. Thus at 500°K operation, the actual long term
radiation damage coefficient is most likely less than that used in the
calculations. The calculated results can thus be considered as worst case
values for a given total radiation dose.

The analysis of the heterojunction solar cells was performed using a
detailed numerical simulation of the semiconductor device equations. Details
of this analysis have been presented elsewhere and will not be repeated here
[10,11]., The calculations provide a detailed description of internal operating
features as well as calculated terminal properties of short circuit current

density, open circuit voltage, fill factor and peak efficiency.
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3. CALCULATED RESULTS
In the first series of calculations, the performance degradation
of a GaAs base layer cell was studied as a function of total electron

radiation dose, The results are shown in Figure 2. The unirradiated —

cell, operating at 500 suns and 500°K has a peak efficiency value of
slightly less than 16X%. The efficiency remains relatively constant out

6 electrons/

to beyond 1013 elec:rons/cni and then falls to about 9% at 101
caz. These results are similar to the 1 sun, 300°K results except for the
magnitude of the efficiency which is slightly above 20% at low radiation
doses,

The influence of base layer AlGaAs composition on solar cell
parameters is shown in Figure 3. For the unirradiasted case (¢=0) the
results have been discussed in detail elsevhere [4,5], The optimr compo-
sitiop is about 15% AlAs. Open circuit voltage incresses with AlAs compo-
sition and short circuit current decreases as seen in the [ -gure, For an

electron dose of 1016/cn2

the calculated results are similar except that
the peak efficiency occurs at a composition of about 21X AlAs or at a
slightly larger bandgap.

The effect of irradiation dose on the optimum seniconductor is shown in
more detail in Figure 4 for several doses. The optimum bandgap shifts from
about 1.6 eV (15% AlAs) at ¢=0 to about 1.7 eV (21% AlAs) at ¢=10*%/cn?,

The curves, however, are reasonably flat indicating that a cell designed
with an AlAs composition anywhere within the range of 15Z-21% has an efti-
ciency value very near the maximum value over the total dose range studied.

The depth of the solar cell p-n junction below the heterojunction is

an important design parameter for high end-of-life efficiency. To study
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this effect at 500 suns, 500°K operation a series of calculations was
made on cells with varying junction depths. The base layer semiconductor
was selected as the value which gives maximum efficiency (15% AlAs) for

the unirradiated cell. The short circuit current values obtained for a
series of junction depths are shown in Figure 5. For the entire range

of doses studied the 0.3 um junction depth gives the largest short circuit

2

current, At 1016/cm , however, the 0.3 um curve is falling wmore rapidly

than the x,=0 curve and the two curves should eventually cross with the

3

x,=0 curve giving the largest current at very large doses.

3
A large junction depth (>0.6um) is seen to result in a rapid drop in

short circuit current with irradiation. For a large junction depth a

large percentage of the carriers recombine in the region between the

heterojunction and the p~n junction when the diffusion length decreases
due to the irradiation. The optimum junction depth decreases with
irradiation dose as expected. However, the calculations show that over
the range of irradiation doses out to about 1016 electrons/cmz, a junction
depth of about 0.3 um is near the optimum value. This is illustrated in
more detail in Figures 6 and 7 which show solar cell terminal parameters
as a function of junction depth at unirradiated conditions (Figure 6) z
and at 1016 electrons/cm2 (Figure 7). The solar cell parameters change

much more rapidly with junction depth after irradiation than before

jrradiation. However, the optimum junction depth in both cases is around

0.2 um - 003 um.
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4, SUMMARY AND CONCLUSIONS

In this work some effects of electron irradiation have been considered
on the design of optimum AlGaAs solar cells. Irradiation has been found
to increase slightly the semiconductor bandgap for highest efficiency.
Also the optimum depth of the p-n junction below the heterojunction decreases
slightly with electron irradiation. However, in both cases values of
composition and junction depth can be found where operation is very near
the maximum value achievable for irradiation doses up to 1016 electrons/cmz.

These results indicafe that AlGaAs solar cell designs should be
capable of near optimum performance over a wide range of irradiation
doses. While these results have been obtained for 500 suns and 500°K
operation, similar conclusions are to be expected from these extreme

operating conditions down to 1 sun, 300°K operation.
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PIGURE CAPTIONS

Heterojunction Solar Cell Device Structure.

Effects of Electron Irradiation on Conventional GaAs Base
Layer Cell Operated at 500 suns and 500°K.

Solar Cell Parameters as a Function of Base Layer Composition,
Effects of Electron Irradiation on Optimum Solar Cell Composition.

Short Circuit Current as a Function of Electron Dose for Various
p-n Junction Depths.

Solar Cell Parameters as a Function of Junction Depth for
¢=0. (500 suns, 500°K)

801ai6Ce11 Parametegs as a Function of Junction Depth for
¢=10*° electrons/cm® (500 suns, 500°K).
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COMPUTER ANALYSIS OF A DOUBLE HETEROJUNCTION
SOLAR CELL STRUCTURE#

J.P.C. Chiang and J.R, Hauser
North Carolina State University
Raleigh, NC 27650

S

The performance of a double heterojunction solar cell structure has
been studied under 1 sun, AMO illumination. Such a structure has a
reduced dark current over a conventional solar cell structure because of é Cy
the minority carrier confinement between the two heterojunctions. The |
efficiency of such a cell, however, has been found to be lower than that
of a conventional heterojunction solar cell because the loss of short

circuit current more than offsets the increased open circuit voltage.

*This work was supported by a NASA Langley research grant.



1, INTRODUCTION

A conventional AlGaAs/GaAs heterojunction solar cell consists of a

thin, wide bandgap AlGaAs layer on top of a thick GaAs base layer. The o

p=n junction is typically located slightly below the heterojunction and
within the GaAs base layer. 1he wide bandgap AlGaAs layer acts as a
window layer to pass most of the photons but at the same time gives a
low minority carrier interface recombination velocity at the surface of
the GaAs layer. The AlGaA/GaAs heterojunction solar cell has so far
exhibited the highest conversion efficiency of any single junction solar
cell [1-3]. Such cells have also been shown to be theoretically very near
the optimum bandgap for single junction cells [4,5].

Further improvements in the efficiency of an AlGaAs/GaAs solar cell
could be obtained if some means could oe found to improve the short
circuit current and/or the open circuit voltage. There ar~ straightforward
ways for achieving the maximum short circuit current. These include the use
of multiple Antireflectingﬁglyera or ;gffgged surfaces to reduce surface
reflection and the achicv;ﬁféx of long difiigion lengths to collect all of
the optically generated eirri;rs. The open circuit voltage is controlled :\
by the short circuit current and the dark current of the cell. For large
open circuit voltages a low dark current is necessary. Long diffusion
lengths reduce the dark current as well as improve the short circuit
current, In addition to the basic material parameters, device structures
can be employed to influence dark current., In silicon solar cells the use
of a bacik surface high~low p-p+ junction has been used to reduce dark
current and enhance open circuit voltage [6,7]. 1In I1l-V dicdes a double
heterojunction type of device structure has been used very successfully

to reduce diode current in laser diodes [8-10].



In this work the application of the double heterojunction structure
to solar cells has been explored. The motivation for this was the

racognition as discussed above that such a structure can be used to

reduce the dark current and hopefully increase the open circuit voltage

of a II1I-V solar cell.

2. DOUBLE HETEROJUNCTION SOLAR CELL STRUCTURE

The basic solar cell structure studied is shown in Figure 1. An ' i
energy band diagram (for y=10 um) is shown in Figure 2. The structure
is similar to a conventional AlGaA/GaAs heterojunction solir cell with
the addition of a second heterojunctior. below the active cell at distance
y from the semiconductor surface. In the figure the wide bandgap material
is shown as pure AlAs. This has been used in the analysis to obtain the
best possible performance. Howaver the bandgap of All-xc‘xA' does not
change greatly for 053:0.2 so the results should alsc be representative
of more practical compositions of BOX-90X AlAs.

Also the entire base layer is shown as composed of AlAs, In a
practical double heterojunction cell ti.e backside AlAs heterojunction
would most likely be a thin layer grown on a GaAs substrate. This more
practical structure would have another hetersjunction present in Figure 1 A
between point y and the back contact, with the substrate being composed
of GaAs. Such a structure was not considered here since it only complicates
the analysis without introducing any additiona’ important physical effects.
Since the additdonal heterojunction would be away from the active solar

cell region, it should not influence the results calculated here,
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An antireflecting layer. of 700A has been taken as present on the

surface. This is the optimum thickness for a conventional AlGaAs/GaAs
solar cell [1,12]. The AlAs window layer thickness has been taken as
0.1 ym. As thin a layer as possible is desired for this layer, The p~n
junction has been taken to be 0.3 um below the heterojunction interface.
This again is near the optimum junction depth for conventional cells,

It may not of course be the optimum depth for a double heterojunction
structure, However it was taken as fixed in the analysis in order to
vary as few parameters as possible.

Finally an ﬂ+-p solar cell structure was selected for study. This
differs in type from the p+-n structures which are typically produced
experimentally for conventional AlGaAs/GaAs solar cells. A p-type base
layer was selected because of the longer diffusion length for electrons
than for holes. If the carrier confinement effect is to reduce the dark
current of the cell, it should be more effective for a given value of y

with the p-type base layer than with an n-type base layer.

3. CALCULATED RESULTS

The solar cell structure shown in Figure 1 has been analyzed using
a detailed numerical solar cell analysis program which is capable of
handling a wide variety of heterojunction and/or graded bandgap structures.
Details of the device modeling and numerical analysis techniques have been
discussed elsewhere [11,12].

The value of diffusion length used in the calculations is one of the
most critical parameters since the second heterojunction must be within

about a diffusion length of the p-n junction in order for minority carrier

bl g e i e



confinement effects to be important., The following empirical equations

have been used to médel the doping dependance of diffusion lengths:

B+ (8x20” Y emd)N

L = 3um (2)

Pop+ (1.2x10 28/ em)n

where N is the doping density. These equations give values of 6,90 um and
2.03 ym for the GaAs n- and p-type regions of the active cell of Figure 1.

The results of the computer calculation with respect to dark current
of the double heterojunction cell are shown in Figure 3 for different active
cell thickness. The lower heterojunction must be located closer than
about 10 um to have a significant effect on the dark current. The thickness
must be reduced to only a few um, however, to produce a large drop in dark
current.

From first order device models, one can easily derive the relationship

W
J, = J, tanh (iFé, (3)
n

where J_ is the dark current for an infinitely thick p-type layer and Jo is
the actual dark current for a given thickness wp. This assumes an ideal
minority carrier reflecting barrier at the heterojunction interface.
For the diffusion length from Equation (1) and a thickness of 2.7 um
(overesponding to y=3 um), this simple model gives a dark current reduction
of a factor of 2.68. At the largest voltage in Figure 3 the ratio of the
two dark currents is 2,25 which is slightly less than the theoretical
reduction, This difference is probably due to the presence of depletion

region current which contributes some to the dark current,

.
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These calculations verify the expected dark current reduction for the
double heterojunction cell. However this must b2z obtained at the expense
of some short circuit current. Figure 4 shows the theoretical optical
generation rate for the cell with an active layer thickness of 10 um.

Beyond the second heterojunction (y=10 um) the generation rate drops to a very
low value because of the wiie bandgap., As the second hetgrojunction depth
decreases, a larger part of the solar spectrum is lost due to incomplete
optical absorption.

The important question concerning the double heterojunction solar cell
is whether the improved dark current more than compensaceé for any loss in
short circuit current. The results of Figure 5 clearly indicate that the
answer is in the negative. This shows the complete light I-V characteristics
of the double heterojunction cell for different cell thicknesses. Some
minor improvement is seen in the open circuit voltage as expected.

However, the loss in short circuit current more than offsets any increase
in open circuit voltage. As the peak efficiency values show, the best

efficiency occurs without the second heterojunction.

4. SUMMARY AND CONCLUSIONS
These results demonstrate that a double heterojunction type of solar
cell structure has a lower effieicny than a conventional type of
heterojunction solar cell. While carrier confinement in such a cell does
act to reduce dark current and increase open circuit voltage, the loss

of short circuit current in such a cell more than offsets these advantages.

e
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These conclusions are somewhat dependent on the value of diffusion
length which can be attained in the solar cell, If the diffusion length
were 10 times as large as those used in the calculations, then some
enhancement of performance would likely occur with the double heterojunction
cells. However, such large diffusion lengths do not at present appear
practical for GaAs material.

Even though the overall efficiency of the double heterojunction
solar cell is less than that of a conventional cell, such structures
might have some advantage as radiation resistant cells. They should
degrade less rapidly with tadiationvthan conventional cells because the
diffusion length would need to be reduced below the active layer thickness
in order to produce 1arge‘degradations in performance, Also the active
region of the double heterojunction cell is very thin. If such cells
could be built without the need for a thick substrate such cells could

potentially have a weight advantage for space applications,
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