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ABSTRACT

This report summarizes work performed on NASA Grant No. NSG 1116

during the period of January 10. 1977 through December 31, 1978. The

work during this period has concentrated on including multi-sun effects,

high temperature effects, and electron irradiation effects into the

computer analysis program for hecerojunction and graded bandgap solar

cells. These objectives have been accomplished and the program is now

available for such calculations.

Th--s report is written in the form of three manuscripts which have

been prepared for publication. Details of the device modeling and

computer analysis techniques used to study solar cells have been contained

in earlier annual reports on this grant and are not repeated here.
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EFFECTS OF TEMPERATURE AND INTENSITY
ON THE OPTIMUM BANDGAP OF A1GaAs SOLAR CELLS*

J. P. C. Chiang and J. R. Hauser
North Carolina State University

Raleigh, NC 27650

ABSTRACT

The optimum bandgap for single junction solar cells operated at AMO,

1 sun conditions and at 300°K is known to occur at a value close to that

of GaAs. This work shows that with increasing temperature and/or

increasing optical intensity the optimum bandgap moves to larger values.

Detailed computer calculations for A1GaAs cells are presented which

illustrate the optimum bandgaps in this material at various temperatures

and solar intensities.

*This work was supported by a NASA Langley research grant.
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1. INTRODUCTION

The optimum energy bandgap of single junction solar cells has been

investigated in several previous papers [113]. Early studies of solar cells

based upon simple device models have predicted that the optimum energy

bandgap is around 1.4-1.6 eV for AHO, 1 sun, room temperature ,peration.

More recent detailed numerical calculations on specific semiconductors

of GSInAs and A1GaAs have shown that the AlGaAs/GaAs heterojunction cell

with an active cell bandgap of about 1.44 eV is very close to the optimum

bandgap [4].

The present work discusses detailed calculations of heterojunction

solar cell performance at increasing temperature and illumination levels.

In order to make the analysis as realistic as possible, the specific

ternary III-V alloys Ga l-XInXAs and Al l-XGaXAs have been selected to be

studied. The Gal-xInXAs provides a semiconductor with bandgaps below

that of GaAs and Al l-XGaXAs provides values above that of GaAs. From

these studies the optimum bandgap for heterojunction type solar cells

at elevated temperature and light intensity can be identified using a

practical set of material parameters.

2. DEVICE MODELING

The calculations of this work were made using a detailed numerical

simulation of heterojunction solar cells. Details of the device modeling

and numerical techniques have been previously discussed [5,6]. The

computer analysis program solves the basic device differential equations

appropriate to heterojunction or graded bandgap solar cells providing

data on the terminal properties of solar cells such as open circuit voltage,

a
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short circuit current, fill factor and maximum efficiency. Input to the

program is a detailed set of material and device parameters from which

the material properties of any desired Al l-xGaxAs or Gal-xInxAs alloy

can be determined.

The additional modeling which is pertinent to the present Mork is

the manner in which temperature effects are incorporated into the model.

For operation around room temperature, both the direct and indirect band-

gapsof the binary semiconductors AlAs, GaAs and InAs were assumed to be

decreased linearly with temperature as

f gego - a (T-To).	 {1)

where 
So 

is the bandgap at T-To (300°K). Table I gives a list of the

temperature coefficients used in the analysis. For the ternary alloys,

a was assumed to vary linearly with composition. 	
r

The temperature dependence of mobility was taken to be of the form

u - Uo (TIT0 )m ,	 (2)

where ND is the mobility at temperature To (300°K) and m is an experimentally

measured constant. For holes and direct bandgap electrons the temperature

dependence was assumed to be that of GaAs with m - -2.3 for electrons [7,9]

and m - -2.0 for holes (9). For the indirect bandgap electrons m - -2.3,

which has been reported for AlAs, was used [7]. While these temperature

dependences may not be exact for all alloy compositions, optimum solar

cells have bandgaps close to that of GaAs and thus this approach should

give a good approximation. Also the indirect bandgap is only important
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Table I. Bandgap temperature coefficients

a(eVJ°K)

Material	 Direct Bandgap	 Indirect Bandgap

InAs	 3.5x10 4 (7)	 4.0x10 
4 [71

GaAs	 4.3x10 4 [8,91	 4.OxlO 
4 

[71

AlAs	 4.3x10 4 [101	 4.Ox10-4 [71

for All-xGaxAs compositions near AlAs and this is the justification for

using the AlAs data for the indirect bandgap.

For the purpose of this work, minority carrier lifetime was assumed

to be independent of temperature. There is no intrinsic reason to assume

this is true, however insufficient data is available on solar cell

quality III-V material to more accurately model lifetime at this time.

The specific solar cell device structure which has been studied is

shown in Figure 1. It consists of a p-type base layer of approximately

125 um in thickness. A wide bandgap All-xGaxAs window layer is present

at the top of the cell. The p-n junctica is taken to be at some small

distance below the heterojunction. Finally an Si0 antireflecting layer

is present on the front surface of the cell.

From previous studies of such cells with a GaAs base layer and an

All-xGaxAs window layer, it has been found that the optimum antireflecting

layer thickness is about .07 um, and the optimum p-n junction depth is

about 0.3 um below the window layer [5,61. These values were used in the

present study along with a window layer thickness of 0.1 um. While the
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optimum window layer thickness is less than 0.1 um this value was selected

as a realistic practical value. While the selected junction depths may

not be optimum values for all alloy compositions, temperatures and/or

light intensities, it was decided to keep these fixed in order to study

only the effects of temperature and solar intensity on the optimum bandgap.

The composition of the window layer was fixed during this present

study at 100% AIAs. This is somewhat larger than the value used in most

present day A1GaAs/GaA9 cells. This represents the ideal upper limit on

the bandgap of the window layer using A1GaAs. However compositions of

90% AlAs have bandgapb which are only slightly less than the pure AIAs

and do not degrade performance significantly.

3. EFFECTS OF TEMPERATURE ON PERFORMANCE

The first calculations to be discussed are for conventional type

heterojunction cells with pure GaAs as the base layer semiconductor.

These illustrate the effects of temperature on heterojunction cells and

provide a base of comparison for cells with other alloy compositions.

Figure 2 shows the calculated dark J-: characteristics for a GaAs

base layer cell at 300°K and 500°K. The dark current increases by over

four orders of magnitude (note scale change) for 500°K operation. At

either 300°K or 500°K the region of operation (near l sc) is within a

current region where the device exhibits near ideal diode behavior. The

mml or 2 values in Figure 2 refer to the diode factor m in an equation of

the form

J = J
a 

exp(gV/mkT).	 (3)

N
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The 500'K curve shows a transition to the high injection region of operation

at around 0.8 volt. This region becomes important when such a cell is

operated at both high temperature and multi-sun illumination conditions as

will be discussed in the next section.

The terminal J-V characteristics under 1 sun, AMD illumination for the

GaAs cell are shown in Figure 3. As temperature increases, the open circuit

voltage decreases, short circuit current increases, the fill factor decreases

and efficiency decreases. All of these changes are expected except perhaps

the increase in short circuit current which deserves some discussion. The

increase in Jac is due mainly to the decrease in bandgap of the semiconductor

with increasing temperature. With the temperature dependence of mobility

and diffusion coefficient used in the modeling, the diffusion length will

decrease with temperature, since D a Tm+1 and m < -2.0. However this

decrease is not sufficient to offset the increase in absorption and Jac

increases.

Figure 4 show the variation of the major solar cell parameters with

temperature for the GaAs base layer cells. The predicted decrease in V
cc

is 2.16 mV/°K. The increasing short circuit current with increasing

temperature partly offsets the decreasing fill factor and the resulting

efficiency decreases only slightly faster than the open circuit voltage

decreases.

In the next series of studies the terminal solar cell device

parameters were investigated as a function of the composition of the

base layer of the heterojunction cell. The window layer was kept fixed

in composition but Gal_xInxAs or All_xGaxAs was substituted in the model for

the material in which the p-n junction is located. The results of this



i

y ^

B

r ^rr^ r r.ws r

N N

a

P.

a 300'K
Q
r4
	

b 350'K

c 400'K

d 450'K

In
	

e 500'K

t 1.

a

1

111

^	 1
t

1

11
i

i	 a

1	 ^b
Ic

e	 Id
1	

1

I
0.6	 0.8	 i.

VOLTAGE (volts)

Figure 3. Effects of Temperature on Light J-V Characteristics for
GaAs Base Layer Cell.



5

35

ts►

34

H

33 y

21	 1.1

19	 1.0

e
w

17	 0.9

^yV

	 ^

V	 a
N
H

150.8

gga

Ci

13 1'4 0.7

1I	 0.6

lsc

F. F.

v	 Efficiency
oc

x

32

31

300	 350	 400	 450	 500

TEMPERATURE ('K)

Figure 4. Dependence of Major Solar Cell Parameters on Temperature.



study are stem in Figure 5 for temperatures of 300'K and 500°K. As has

previously been discussed 141, the peak efficiency at 300°K occurs

almost exactly at the GaAs base layer. composition. As the composition

is varied from 0% AlAs to increasing percentages, the open circuit voltage

increases but the short circuit current decreases. These opposite changes

give rise t^ a rather flat peak in efficiency.

At 500°K the efficiency peak is seen to be shifted to higher Al^s

percentages and consequently to higher bandgaps. The peak efficiency

occurs ft about 20-22% AlAs which corresponds to an energy bandgap of

about 1.70-1.73 eV.

Higher temperature of operation thus causes a shift of the optimum

bandgap to higher values. This is seen in Figure 6 for three different

temperatures. At 400°K the AlAs composition is approximately half that

for the optimum composition at 500°K. At 400 °K the improvement in

efficiency over that achieved with GaAs as the base layer material is

about 0.3 percentage point which may be too small to justify the added

complexity of an A1GaAs base layer cell. At 500 °K the enhanced efficiency

is about 1.3 percentage points above a GaAs cell and represents a signifi-

cant increase.

4. EFFECTS OF SOLAR INTENSIT'1 ON PERFORMANCE

The optimum semiconductor bandgap or composition for the base layer

is also a functioi of solar intensity at which the cell is to be operated.

This is shown in Figure 7 where peak efficiency is shown - ,. s a function of

composition at three different solar intensities and at 500°K. The

1 sun curve is the same as that in Figure 5 and shows a peak in the range

of 20-22% A--i. At 100 and 500 suns the peak efficiency occurs at a

lower compot cion of around 15-16% AlAs.
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A simple physical . explanation of the decrease in optimum bandgap with

increasing intensity is not easily obtained. From simple device models

one expects the short circuit current to increase linearly with intensity

at a fixed temperature and the voltage to increase logarithmatically

with increasing intensity. Both of these increases were found to be

approximately valid from the enact computer analysis.

The fill factor is also expected to increase because of the increasing

open circuit voltage. This expected variation of fill factor was not

found, however, in the numerical calculations. The fill factor was in

fact found to peak at a solar intensity of about 100 suns and then to

decrease at higher solar intensities. This is shown in Figure 8 for two

different base layer compositions of 0% and 25% AlAs. Also shown in

Figure 8 are peak efficiency curves for the same compositions. The

efficiency is seen to peak at about 300-500 suns and then decrease because

of the rapid decrease in fill factor.

The decreasing fill factor can be traced to high injection effects

occurring in the cell at high solar intensities and high temperature and its

detrimental effect on efficiency. Referring back to Figure 2 it is seen

that at 500°K, high injection effects with an m factor of about 2 begin

to occur at a current density of about 3 amp/cm 2 which is about two orders

of magnitude above the J sc line for 500°K. Thus at about 100 suns and

500°K the cell begins to operate under high injection conditions and this

is responsible for the low fill factor above about 100 suns.
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5. SUMM AND CONCLUSIONS

In this work the effects of temperature and illumination intensity

on the optimum base layer composition of A1GaAs solar cells has been

investigated. A numerical computer program has been used to model in

detail the properties of specific solar cell structures. The thicknesses

of the various solar cell regions have been taken as fixed in this study

and consequently the calculated efficiencies may not be the absolute maximum.

However, the calculated results are expected to be close to the optimum

values.

The optimum bandgap shifts to larger values and the optimum A1GaAs

material shifts to larger AlAs percentages as the operating temperature

increases. At 500°K 1 sun operation the optimum bandgap was found to be

about 1.7 eV and to occur at 20-22% AlAs.

One of the most important results of this work is the finding that maximum

efficiency peaks as a function of solar intensity. For 500°K operation the

peak was found to occur at about 500 suns. This peak arises from the onset

of high injection effects at high temperature and high intensities. In an

actual cell other factors not considered such as surfa..e layer sheet resistance

can also give limiting efficiency effects. However, high injection is an

intrinsic limiting effect which must be considered for high temperature,

high intensity solar cells.
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FIGURE CAPTIONS

Figure 1. Heterojunction Solar Cell Device Structure.

Figure Z. Dark I-V Characteristics for GaAs Base Layer Cell at Two
Temperatures.

Figure 3. Effects of Temperature on Light J-V Characteristics for GaAs
Base Layer Call.

Figure 4. Dependence of Major Solar Cell Parameters on Temperature.

Figure 5. Solar Cell Parameters as a Function of Base Layer Composition.

Figure 6. Peak Efficiency as a Function of Composition at Different
Temperatures.

Figure 7. Peak Efficiency as a Function of Base Layer Composition for
Different Solar Intensities.

Figure 8. Changes in Peak Efficiency and Fill Factor as a Function of
Solar Intensity.
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OPTUaZATION OF AIGaAs SOLAR CELLS FOR RADIATION EFFECTS

J.P.C. Chiang and J.R. Hauser
North Carolina State University

Raleigh, NC 27650

ABSTRACT

In this work some effects of radiation on the design of high

efficiency A1GaAs solar cells are discussed. The optimum bandgap

and composition of A1GaAs for maximum end-of-life efficiencies are

discussed for concentration cells operating at high temperature.

It is found that the optimum bandgap shifts to slightly larger values

after radiation. An optimum p-n junction depth below the heterojunction

of about 0.3 Um is found both before radiation and after a radiation dose

16	 2of 10 electrons/cm.
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1. INTRODUCTION

The A1Ga"/Gags heterojunction solar cell has so far demonstrated

the highest conversion efficiency of any single junction solar cell

[1-3]. Previous studies have shown that such cells are very close to

the optimum energy bandgap value for single junction cells [4,5].

AlGaAs /GaAs heterojunction calls also offer the potential for high

concentration and/or high temperature operation. Concentration ratios

as high as 500-1000 are presently being considered for such cells [5-9].

For operation in the space environment, the long term effects of

electron (or other particle) irradiation are important design considera-

tions. The average solar cell efficiency over some useful life expectancy

is more important than the initial efficiency. In some space applications

the end-of-life efficiency is the most meaningful efficiency value.

The high efficiency A1GaAs/GaAs solar cells are not presently used

in space. However, they are being considered for a number of space

applications. The solar space power station represents one potential

large scale application of such cells. Because of the high cost of A1GaAs

solar cells, they are most likely to be used in concentration systems

with concentration factors on the order of several hundred.

Because of the large solar flux under concentration, high temperature

operation of concentrator cells must also be considered. The temperature

of a concentrator cell obviously depends on the method of cooling and the

thermal resistance between the cell and any heat sink. The tradeoffs

between the cost of heat removal equipment and loss of efficiency at

I
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elevated temperatures are complicated system design factors. The approach

taker in this work has been to explore optimum solar call design at a high

assumed operating temperature of 500 °K. This may be too high for use in a

;ractical solar cell application. However, the optimum solar cell design

parameters found at 500 suns, 500°K operation are sufficiently similar to

those found for 1 sun, 300•K operation that confidence can be gained in

the fact that AIGaAs/GaAs heterojunction cells can be designed which will

give near optimum performance over a wide range of concentration factors

and temperatures.

2. SOLAR CELL MODELING

The solar cell model used in the present calculations is shown in

Figure 1. The p-n junction is located slightly below an n-n heterojunction,

with the wide bandgap window layer providing a low surface recombination

boundary to the underlying narrower bandgap solar cell. The window layer

was taken to be AlAs and with a thickness of 0.1 um in order to minimize

optical absorption in this layer. The antireflecting layer was taken ^o
e

be SiO with an optimum thickness of 700; [ 10,11].

The material in which the p-n junction is located was taken as

Al
1-x x

Ga As =vith the composition varied to select the optimum bandgap value

for maximum efficiency. The thick base layer of the cell was taken to be

p-type material. This was selected because of the much longer diffusion

les.gth for electrons than for holes.

The modeling of the material parameters as a function of composition

and temperature  has been discussed elsewhere [10,11]. For the effects of

a

radiation on lifetime and diffusion length, the following equations were used:
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where t0 and L0 are the unirradiated lifetime and diffusion length and

# is the total electron radiation dose. The value of 
K1.. 

7x10-$ has

been used in the calculations (12). This value is the measured value for

GaAs solar cells at room temperature. Since the optimum cell designs have

A1GaAs compositions near that of GaAs, the use of the GaAs value should be

reasonably accurate. A more serious limitation is the use of this value

for cellsoperating at high temperatures (500*K for example). As opposed

to Silicon, irradiation effects in GaAs are known to show annealing effects

at fairly low temperatures. Thus at 500'K operation, the actual long term

radiation damage coefficient is most likely less than that used in the

calculations. The calculated results can thus be considered as worst case

values for a given total radiation dose.

The analysis of the hetero,junction solar cells was performed using a

detailed numerical simulation of the semiconductor device equations. Details

of this analysis have been presented elsewhere and will not be repeated 'sere

(10,11). The calculations provide a detailed description of internal operating

features as well as calculated terminal properties of short circuit current

density. open circuit voltage, fill factor and peak efficiency.

t
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3. CALCULATED RESULTS

In the first series of calculations, the performance degradation

of a GaAs base layer cell was studied as a function of total electron

radiation dose. The results are shown in Figure 2. The unirradiated

call, operating at 500 suns and 500°K has a peak efficiency value of

slightly less than 16%. The efficiency remains relatively constant out

to beyond 1013 electrons/cm` and than falls to about 9% at 10 18 electrons!

cm2. These results are similar to the 1 sun, 300'K results except for the

magnitude of the efficiency which is slightly above 20% at low radiation

doses. -

The influence of base layer AIGaAs composition on solar cell

parameters is shown in Figure 3. For the unirradiated case 0-0) the

results have been discussed in detail elsewhere 14,5j. The optimv compo-

sition is about 15% AlAs. Upon circuit voltage increases with AlAs compo-

sition and short circuit current decreases as seen in the f- gure. For an

electron dose of 1016 /cm 2 the calculated results are similar except that

the peak efficiency occurs at a composition of about 21% AlAs or at a

slightly larger bandgap.

The effect of irradiation dose on the optimum semiconductor is shown in

more detail in Figure 4 for several doses. The optimum bandgap shifts from

about 1.6 eV (15% AlAs) at 0-0 to about 1.7 eV (21% AlAs) at s-1016/cm2

The curves, however, are reasonably flat indicating that a cell designed

with an AlAs composition anywhere within the range of 152-21% has an effi-

ciency value very near the maximum value over the total dose range studied.

The depth of the solar cell p-n junction below the heterojunction is

an important design parameter for high end-of-life efficiency. To stWy

-	 s	 _
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this effect at 500 suns, 5410°K operation a series of calculations was

made on cells with varying junction depths. The base layer semiconductor

was selected as the value which gives maximum efficiency (15% AlAs) for

the unirradiated cell. The short circuit current values obtained for a

series of junction depths are shown in Figure 5. For the entire range

of doses studied the 0 . 3 um junction depth gives the largest short circuit

current. At 1016/cm2 , however, the 0.3 um curve is falling more rapidly

than the xj a0 curve and the two curves should eventually cross with the

xj =0 curve giving the largest current at very large doses.

A large junction depth (>0.6pm) is seen to result in a rapid drop in

short circuit current with irradiation. For a large junction depth a

large percentage of the carriers recombine in the region between the

heterojunction and the p-n junction when the diffusion length decreases

due to the irradiation. The optimum junction depth decreases with

irradiation dose as expected. However, the calculations show that over

the range of irradiation doses out to about 1016 electrons/cm2 , a junction

depth of about 0.3 um is near the optimum value. This is illustrated in

more detail in Figures 6 and 7 which show solar cell terminal parameters

as a function of junction depth at unirradiated conditions (Figure 6)

and at 1016 electrons/cm2 (Figure 7). The solar cell parameters change

much more rapidly with junction depth after irradiation than before

irradiation. However, the optimum junction depth in both cases is around

0.2 pm - 0.3 um.
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4. SUMdARY AND CONCLUSIONS

In this work some effects of electron irradiation have been considered

on the design of optimum A1GaAs solar cells. Irradiation has been found

to increase slightly the semiconductor bandgap for highest efficiency.

Also the optimum depth of the p-n junction below the heterojunction decreases

slightly with electron irradiation. However, in both cases values of

composition and junction depth can be found where operation is very near

the maximum value achievable for irradiation doses up to 10 16 electrons/cm2.

These results indicate that AlGaAs solar cell designs should be

capable of near optimum performance over a wide range of irradiation

doses. While these results have been obtained for 500 suns and 500°K

operation, similar conclusions are to be expected from these extreme

operating conditions down to 1 sun, 300°K operation.



14

REFERENCES

1. H. J. Hovel, Semiconductors and Semitals, vol. 11: Solar Cells,
Academic Press, ICY, 1975.

2. H. J. Hovel and J. M. Woodall, "Theoretical and Experimental Evaluation
of Ga Al As-GaAa Solar Cells", Proc. Tenth IEEE Photovoltaic Spec.
Conf., lovimber 1973, p. 25.

3. H. J. Hovel and J. M. Woodall, "Improved GaAs Solar Cells with Very
Thin Junctions", Proc. Twelfth Photovoltaic Spec. Conf., November, 1976,
pp. 945-947.

4. J. E. Sutherland and J. R. Hauser, "Optimum Bandgap of Several III-V
Heterojunction Solar Cells", Solid-State Elec., 22, January 1979, pp. 3-5.

5. J. P. C. Chiang and J. R. Hauser, "Effects of Temperature and Intensity
on the Optimum Bandgap of A1GaAs Solar Cells", to be published.

6. D. T. O'Donnell, S. P. Robb, T. T. Rule, R. W. Sanderson and C. E.
Backus, "Performance of Silicon and Gallium Arsenide Concentrator
Cells", Proc. Thirteenth Photovoltaic Spec. Conf., June 1978, pp. 804-809.

7. H. A. Vander Plas, L. W. James, R. L. Moon and N. J. Nelson,
"Performance of A1GaAs/GaAs Terrestrial Concentrator Solar Cells",
Proc. Thirteenth Photovoltaic Spec. Conf., June 1978, pp. 934-940.

8. J. Ewan, R. C. Knechtli, R. Loo and G. S. Kamath,."GaAs Solar Cells
for High Solar Concentration Applications", Proc. Thirteenth
Photovoltaic Spec. Conf., June 1978, pp. 941-945.

9. R. Sahai, D. D. Edwall and J. S. Harris, Jr., "High Efficiency
A1GaAs/GaAs Concentrator Solar Cells", Proc. Thirteenth Photovoltaic
Spec. Conf., June 1978, pp. 946-952.

10. J. E. Sutherland and J. R. Hauser, "Computer Analysis of Heterojunction
and Graded Bandgap Solar Cells", Proc. Twelfth Photovoltaic Spec. Conf.,
November 1976, pp. 939-944.

11. J. E. Sutherland and J. R. Hauser, "A Computer Analysis of Heterojunctions
and Graded Composition Solar Cells", IEEE Trans. on ED, ED-24,
April 1977, pp. 363-372.

12. R. Loo, L. Goldhammer, B. Anspaugh, R. C. Knechtli and G. S. Kamath,
"Electron and Proton Degradation in (A1Ga)As-GaAs Solar Cells",
Proc. Thirteenth Photovoltaic Spec. Conf., June 1978, pp. 562-570.

I

I

i



15

FIGURE CAPTIONS

Figure 1. Heterojunction Solar Cell Device Structure.

Figure 2. Effects of Electron Irradiation on Conventional GaAs Bass
Layer Call Operated at 500 suns and 500°K.

Figure 3. Solar Cell Parameters as a Function of Bass Layer Composition.

Figure 4. Effects of Electron Irradiation on Optimum Solar Cell Composition.

Figure 5. Short Circuit Currant as a Function of Electron Dose for Various
p-n Junction Depths.

Figure 6. Solar Cell Parameters as a Function of Junction Depth for
#-0. (500 suns, 500'K)

Figure 7. Sola 6Cell Parameters as a Function of Junction Depth for
-10 electrons/cm (500 suns, 500°K).
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CONFUTER ANALYSIS OF A DOUBLE HETEROJUNCTION
SOLAR CELL STRUCTURP

J.P.C. Chiang and J.R. Hauser
North Carolina State University

Raleigh, NC 27658

The performance of a double heterojunction solar cell structure has

been studied under 1 sun, ANO illumination. Such a structure has a

reduced dark current over a conventional solar cell structure because of

the minority carrier confinement between the two heterojunctions. The

efficiency of such a cell, however, has been found to be lower than that

of a conventional heterojunction solar cell because the loss of short

circuit current more than offsets the increased open circuit voltage.

*This work was supported by a NASA Langley research grant.
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1. INTRODUCTION

A conventional AIGaAs/GsAa heterojunction solar cell consists of a

thin, wide bandgap A1Ga" layer on top of a thick GaAs base layer. The

p-n junction is typically located slightly below the heterojunction and

within the GaAs base layer. L ne wide bandgap A1GaAa layer acts as a

window layer to pass most of the photons but at the same time gives a

low minority carrier interface recombination velocity at the surface of

the GaAs layer. The A1GWGaAs heterojunction solar cell has so far

exhibited the highest conversion efficiency of any single junction solar

cell [ 1-31. Such calls have also been shown to be theoretically very near

the optimum bandgap for single junction cells [4, 51 .

Further improvements in the efficiency of an A1GaAs/GaAs solar cell

could be obtained if some mean. could he found to improve the short

circuit current and/or the open circuit voltage. There are straightforward

ways for achieving the maximum short circuit current. These include the use

of multiple antireflectinslayers or teed surfaces to reduce surface

reflection and the achievement of long diffusion  lengths to collect all of

the optically generated carriers. The open circuit voltage is controlled

by the short circuit current and the dark current of the cell. For large

open circuit voltages a low dark current is necessary. Long diffusion

lengths reduce the dark current as well as improve the short circuit

current. In addition to the basic material parameters, device structures

can be employed to influence dark current. In silicon solar cells the use

of a back surface high-low 	 #^	 P-P junction has been used to reduce dark

current and enhance open circuit voltage (6.71. In III-V diodes a double

heterojunction type of device structure has been used very successfully

to reduce diode current in laser diodes [8-141.

z
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In this work the application of the double heterojunction structure

to solar cells has been explored. The motivation for this was the

recognition as discussed above that such a structure can be used to

reduce the dark current and hopefully increase the open circuit voltage

of a III-V solar call.

2. DOUBLE HETEROJUHGTION SOLAR CELL STRUCTURE

The basic solar cell structure studied is shown in Figure 1. An

energy band diagram (for y-10 M) is shown in Figure 2. The structure
is similar to a conventional A1G&AjG&As heterojunction solar cell with

the addition of a second heterojunction. below the active cell st distance

y from the semiconductor surface. In the figure the wide bandgap material

is shown as pure AlAs. This has bean used in the analysis to obtain the

best possible performance. However the bandgap of All-xGaxAs does not

change greatly for 0c& <0.2 so the results should also be representative

of more practical compositions of 80%-90% AlAs.

Also the entire base layer is shown as composed of AlAs. In a

practical double heterojunction cell ti.e backside AlAs heterojunction

would most likely be a thin layer grown on a GaAs substrate. This more

practical structure would have another heterojunction present in Figure 1

between point y and the back contact, with the substrate being composed

of GaAs. Such a structure was not considered here since it only complicates

the analysis without introducing any addition&' important physical effects.

Since the additional heterojunction would be away from the active solar

cell region, it should not influence the results calculated here.

N
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An antireflecting layer.of 700A has been taken as present on the

surface. This is the optimum thickness for a conventional A1GaAs/GaAs

g	 solar celli 12].[ ,	 The AlAs window layer thickness has been taken as

0.1 um. As thin a layer as possible is desired for this layer. The p-n

junction has been taken to be 0.3 um below the heterojunction interface.

This again is near the optimum junction depth for conventional cells.

It may not of course be the optimum depth for a double heterojunction

structure. However it was taken as fixed in the analysis in order to

vary as few parameters as possible.

Finally an n -p solar cell structure was selected for study. This

differs in type from the p+-n structures which are typically produced

experimentally for conventional A1GaAs/GaAs solar cells. A p-type base

layer was selected because of the longer diffusion length for electrons

than for holes. If the carrier confinement effect is to reduce the dark

current of the cell, it should be more effective for a given value of y

with the p-type base layer than with an n-type base layer.

3. CALCULATED RESULTS

The solar cell structure shown in Figure 1 has been analyzed using

a detailed numerical solar cell analysis program which is capable of

handling a wide variety of heterojunction and/or graded bandgap structures.

Details of the device modeling and numerical analysis techniques have been

discussed elsewhere [11,12).

The value of diffusion length used in the calculations is one of the

most critical parameters since the second heterojunction must be within

about a diffusion length of the p-n junction in order for minority carrier
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confinement affects to be important. The following empirical equations

have been used to model the doping dependence of diffusion lengths:

sum	
=

Ln 1 + (8x10-19Ic3)N	
11).

Lp =	 3µm 18	 3	

(2)	

.^

L + (1.2x10 /cm )N

where N is the doping density. These equations give values of 6.90 µm and

2.03 µm for the GaAs n- and p-type regions of the active cell of Figure 1.

The results of the computer calculation with respect to dark current

of the double heterojunction cell are shown in Figure 3 for different active 	 .

cell thickness. The lower heterojunction must be located closer than

about 10 µm to have a significant effect on the dark current. The thickness

must be reduced to only a few µm, however, to produce a large drop in dark

current.

From first order device models, one can easily derive the relationship

W
Jo 	J. tank ( L P-) ,	 (3)

n

where J^ is the dark current for an infinitely thick p-type layer and J o is
z

the actual dark current for a given thickness W p . This assumes an ideal

minority carrier reflecting barrier at the heterojunction interface.

For the diffusion length from Equation (1) and a thickness of 2.7 µm

(overesponding to y=3 µm), this simple model gives a dark current reduction

of a factor of 2.68. At the largest voltage in Figure 3 the ratio of the

two dark currents is 2.25 which is slightly less than the theoretical

reduction. This difference is probably due to the presence of depletion

region current which contributes some to the dark current.
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These calculations verify the expected dark current reduction for the

double heterojunction cell. However this must b_ obtained at the expense

of some short circuit current. Figure 4 shows the theoretical optical

generation rate for the cell with an active layer thickness of 10 um.

Beyond the second heterojunction (ys10 um) the generation rate drops to a very

low value because of the wiie bandgap. As the second heterojunction depth

decreases, a larger part of the solar spectrum is lost due to incomplete

optical absorption.

The important question concerning the double heterojunction solar cell

is whether the improved dark current more than compensates for any loss in

short circuit current. The results of Figure S clearly indicate that the

answer is in the negative. This shows the complete light I-V characteristics

of the double heterojunction cell for different cell thicknesses. Some

minor improvement is seen in the open circuit voltage as expected.

However, the loss in short circuit current more than offsets any increase

in open circuit voltage. As the peak efficiency values show, the best

efficiency occurs without the second heterojunction.

4. SUMMARY AND CONCLUSIONS

These results demonstrate that a double heterojunction type of solar

cell structure has a lower effieicny than a conventional type of

heterojunction solar cell. While carrier confinement in such a cell does

act to reduce dark current and increase open circuit voltage, the loss

of short circuit current in such a cell more than offsets these advantages.
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These conclusions are somewhat dependent on the value of diffusion

length which can be attained in the solar cell. If the diffusion length

were 10 times as large as those used in the calculations, then some

enhancement of performance would likely occur with the double heterojunction

cells. However, such large diffusion lengths do not at present appear

practical for GaAs material.

Even though the overall efficiency of the double heterojunction

solar cell is less than that of a conventional cell, such structures

might have some advantage as radiation resistant cells. They should

degrade less rapidly with radiation than conventional cells because the

diffusion length would need to be reduced below the active layer thickness

in order to produce large degradations in performance. Also the active

region of the double heterojunction cell is very thin. If such cells

could be built without the need for a thick substrate such cells could

potentially have a weight advantage for space applications.

a
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FIGURE CAPTIONS

Figure 1. Double Heterojunction Solar Cell Structures.

Figure 2. Energy Band Diagram for Double Heterojunction Solar Cell.

Figure 3. Dark Current for Double Heterojunction Solar Cell.

Figure 4. Optical Generation Rate for Double Heterojunction Solar Cell.

Figure 5. Light I-V Characteristics of Double Heterojunction Solar Cell.
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