13 research outputs found

    mars and tousled-like kinase act in parallel to ensure chromosome fidelity in Drosophila

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High levels of <it>Hepatoma Up-Regulated Protein </it>(<it>HURP</it>) and <it>Tousled-Like Kinase </it>(<it>TLK</it>) transcripts are found in hepatocellular carcinoma. <it>HURP </it>overexpression induces anchorage-independent growth of 293-T cells and enhances a rough-eye phenotype resulting from <it>tlk </it>overexpression in <it>Drosophila</it>. In addition, both HURP and Mars, a <it>Drosophila </it>HURP sequence homologue, promote polymerization of mitotic spindles. Thus, the genetic interaction of <it>mars </it>with <it>tlk </it>might be required for accurate chromosome segregation.</p> <p>Methods</p> <p>To reveal whether chromosome fidelity was decreased, the frequency of gynandromorphy, an individual with both male and female characteristics, and of non-disjunction were measured in the progeny from parents with reduced <it>mars </it>and/or <it>tlk </it>activities and analyzed by Student's <it>t</it>-test. To show that the genetic interaction between <it>mars </it>and <it>tlk </it>is epistatic or parallel, a cytological analysis of embryos with either reduced or increased activities of <it>mars </it>and/or <it>tlk </it>was used to reveal defects in mitotic-spindle morphology and chromosome segregation.</p> <p>Results</p> <p>A significant but small fraction of the progeny from parents with reduced <it>mars </it>activity showed gynandromorphy and non-disjunction. Results of cytological analysis revealed that the decrease in chromosome fidelity was a result of delayed polymerization of the mitotic spindle, which led to asynchronous chromosome segregation in embryos that had reduced <it>mars </it>activity. By removing one copy of <it>tousled-like kinase </it>(<it>tlk</it>) from flies with reduced <it>mars </it>activity, chromosome fidelity was further reduced. This was indicated by an increased in the non-disjunction rate and more severe asynchrony. However, the morphology of the mitotic spindles in the embryos at metaphase where both gene activities were reduced was similar to that in <it>mars </it>embryos. Furthermore, <it>tlk </it>overexpression did not affect the morphology of the mitotic spindles and the cellular localization of Mars protein.</p> <p>Conclusion</p> <p>Chromosome fidelity in progeny from parents with reduced <it>mars </it>and/or <it>tlk </it>activity was impaired. The results from cytological studies revealed that <it>mars </it>and <it>tlk </it>function in parallel and that a balance between <it>mars </it>activity and <it>tlk </it>activity is required for cells to progress through mitosis correctly, thus ensuring chromosome fidelity.</p

    Pediatric campylobacteriosis in northern Taiwan from 2003 to 2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been a marked increase in the incidence of, and concern regarding, human <it>Campylobacter jejuni </it>and <it>C. coli </it>infections worldwide during the last decade. As the highest infectious disease control apparatus in Taiwan, we aimed to describe the character of <it>Campylobacter </it>isolates from infected children, as well as basic information about the patients, from December 2003 to February 2005.</p> <p>Methods</p> <p>A total of 894 fecal specimens were collected by several clinics and hospitals from children who had diarrhea, followed by plating onto selective media. Drug susceptibility test of the isolates from these specimens were conducted by disc diffusion method and their serotypes were also studied using commercial antisera made in Japan.</p> <p>Results</p> <p>The isolation rate of <it>Campylobacter </it>during these 15 months was 6.8% and was higher in winter (11.1%) than in other seasons. <it>C. jejuni </it>was the most prevalent (95.1%) species in northern Taiwan, comparable to other developed countries. Among the 61 <it>Campylobacter </it>isolates, most were resistant to tetracycline (93.4%), nalidixic acid (91.8%), ciprofloxacin (90.2%), and ampicillin (85.5%). Erythromycin-resistant isolates represented 3.3% of all isolates, suggesting that this drug may be the first choice for treatment. The serotypes of the 61 isolates were demonstrated and only 41.4% were typable.</p> <p>Conclusion</p> <p>In this study, the Taiwan CDC provided an epidemiological analysis of <it>Campylobacter </it>infection, including the isolation rate, age, seasonal distribution, antimicrobial drug susceptibility patterns, and serotypes of the isolates from pediatric patients in northern Taiwan from 2003 to 2005.</p

    The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression

    Get PDF
    The Torso (Tor) signaling pathway activates tailless (tll) expression by relieving tll repression. None of the repressors identified so far, such as Capicuo, Groucho and Tramtrack69 (Ttk69), bind to the tor response element (tor-RE) or fully elucidate tll repression. In this study, an expanded tll expression pattern was shown in embryos with reduced heat shock factor (hsf) and Trithorax-like (Trl) activities. The GAGA factor, GAF encoded by Trl, bound weakly to the tor-RE, and this binding was enhanced by both Hsf and Ttk69. A similar extent of expansion of tll expression was observed in embryos with simultaneous knockdown of hsf, Trl and ttk69 activities, and in embryos with constitutively active Tor. Hsf is a substrate of mitogen-activated protein kinase and S378 is the major phosphorylation site. Phosphorylation converts Hsf from a repressor to an activator that works with GAF to activate tll expression. In conclusion, the GAF/Hsf/Ttk69 complex binding to the tor-RE remodels local chromatin structure to repress tll expression and the Tor signaling pathway activate tll expression by modulating a dual transcriptional switch

    Global population structure and evolution of Bordetella pertussis and their relationship with vaccination.

    Get PDF
    Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. IMPORTANCE Whooping cough is mainly caused by Bordetella pertussis, and current vaccines are targeted against this organism. Recently, there have been increasing outbreaks of whooping cough, even where vaccine coverage is high. Analysis of the genomes of 343 B. pertussis isolates from around the world over the last 100 years suggests that the organism has emerged within the last 500 years, consistent with historical records. We show that global transmission of new strains is very rapid and that the worldwide population of B. pertussis is evolving in response to vaccine introduction, potentially enabling vaccine escape

    Distribution of Melioidosis Cases and Viable Burkholderia pseudomallei in Soil: Evidence for Emerging Melioidosis in Taiwan▿

    No full text
    A survey for the prevalence if Burkholderia pseudomallei in soil in Taiwan found that its incidence is comparable to that in other regions of the world where melioidosis is endemic. The presence of identical genetic patterns among the clinical and environmental isolates evaluated suggested a link between the pathogens present in contaminated soil and the emergence of indigenous melioidosis

    Genotyping and macrolide-resistant mutation of Bordetella pertussis in East and South-East Asia

    No full text
    ABSTRACT: Objectives: Macrolide-resistant Bordetella pertussis (MRBP) has been emerging and prevailing in mainland China since 2011. In this study, we aimed to investigate the genotype and macrolide resistance of circulating B. pertussis in East and Southeast Asia using genetic analyses. Methods: A total of 302 DNA extracts from clinical specimens and isolates from 2010 to 2020 were analyzed: 145 from Vietnam, 76 from Cambodia, 48 from Taiwan, and 33 from Japan. Genotypes were determined by multilocus variable-number tandem-repeat analysis (MLVA). Macrolide-resistant A2047G mutation in B. pertussis 23S rRNA was investigated using the duplex Cycleave real-time polymerase chain reaction (PCR) assay. Whole-genome sequencing was performed on two MRBP isolates that were identified for the first time in Taiwan. Results: Overall, 286 DNA extracts (95%) generated a complete MLVA genotype and 283 DNA extracts (94%) yielded a complete result for the A2047G mutation analysis. The A2047G mutation was detected in 18 DNA extracts: fourteen from Vietnam, one from Cambodia, two from Taiwan, and one from Japan. Most of them (78%) showed the genotypes MT104 and MT195, which have previously been reported in Chinese MRBP isolates. Further, the Taiwanese MRBP isolates were classified into the MT104 clade of Chinese MRBP isolates. Conclusion: After MRBP emerged and spread in mainland China, it may have spread to East and Southeast Asia in the 2010s. Continued surveillance targeting the A2047G mutation of MRBP is needed to prevent further spread of this emerging pathogen
    corecore