32 research outputs found

    Analyses of Oviductal Pars Recta-Induced Fertilizability of Coelomic Eggs in Xenopus laevis

    Get PDF
    AbstractThe acquisition of fertilizability in coelomic eggs of Xenopus laevis has been shown to be correlated with the physical, biochemical, and ultrastructural alterations of the egg envelope [coelomic envelope (CE)] induced during the passage of eggs through the pars recta portion of the oviduct. However, no direct evidence that the pars recta renders eggs fertilizable has yet been presented. In this study, we show that coelomic eggs are highly fertilizable when they are incubated with continuous shaking for 4 h at 15°C in pars recta extract (PRE) derived from females prestimulated by pregnant mare serum gonadotropin. The PRE from pituitary-stimulated Bufo japonicus was as potent as homologous PRE in rendering Xenopus eggs fertilizable. Incubation of coelomic eggs in PRE for 30 min induced a dramatic increase in the rates of sperm binding to the envelope to a level equivalent to that exhibited by the envelope from uterine eggs (VEs). The CE-to-VE ultrastructural conversion and a 43k-to-41k hydrolysis of the envelope glycoprotein component started 5 min after, and were completed by 15 min after, the start of incubation in PRE and were accompanied by an exposure of a new N-terminal sequence typical to gp41. Thus, the biochemical and ultrastructural conversions and the sperm-binding activity of the envelope induced by PREs, although being prerequisite, were not sufficient to render coelomic eggs fully accessible to fertilizing sperm

    The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis.

    Get PDF
    Transient receptor potential melastatin-7 (TRPM7) is a bi-functional protein containing a kinase domain fused to an ion channel. TRPM7 is highly expressed in ameloblasts during tooth development. Here we show that TRPM7 kinase-inactive knock-in mutant mice (TRPM7 KR mice) exhibited small enamel volume with opaque white-colored incisors. The TRPM7 channel function of ameloblast-lineage cells from TRPM7 KR mice was normal. Interestingly, phosphorylation of intracellular molecules including Smad1/5/9, p38 and cAMP response element binding protein (CREB) was inhibited in ameloblasts from TRPM7 KR mice at the pre-secretory stage. An immunoprecipitation assay showed that CREB was bound to TRPM7, suggesting that direct phosphorylation of CREB by TRPM7 was inhibited in ameloblast-lineage cells from TRPM7 KR mice. These results indicate that the function of the TRPM7 kinase domain plays an important role in ameloblast differentiation, independent of TRPM7 channel activity, via phosphorylation of CREB.福岡歯科大学2017年
    corecore