70 research outputs found

    Microstructure-Stabilized Blue Phase Liquid Crystals

    Get PDF
    We show that micron-scale two-dimensional (2D) honeycomb microwells can significantly improve the stability of blue phase liquid crystals (BPLCs). Polymeric microwells made by direct laser writing improve various features of the blue phase (BP) including a dramatic extension of stable temperature range and a large increase both in reflectivity and thermal stability of the reflective peak wavelength. These results are mainly attributed to the omni-directional anchoring of the isotropically oriented BP molecules at the polymer walls of the hexagonal microwells and at the top and bottom substrates. This leads to an omni-directional stabilization of the entire BPLC system. This study not only provides a novel insight into the mechanism for the BP formation in the 2D microwell but also points to an improved route to stabilize BP using 2D microwell arrays.Comment: 16 pages, 5 figure

    Gene-Gene Interactions in Renin-Angiotensin-Aldosterone System Contributes to End-Stage Renal Disease Susceptibility in a Han Chinese Population

    Get PDF
    Objective. In this study, we investigated whether RAAS gene single nucleotide polymorphisms (SNPs) and their interactions were associated with end-stage renal stage (ESRD). Methodology and Results. This was a case-control study for 647 ESRD cases and 644 controls. AGT (M235T (rs699) and T174M (rs4762)), AGTR1 (A1166C (rs5186) and C573T (rs5182)), ACE (I/D (rs1799752) and G2350A (rs4343)), and CYP11B2 C-344T (rs1799998) were genotyped and compared between cases and controls to identify SNPs associated with ESRD susceptibility. Multifactor dimensionality reduction (MDR) was used to identify gene-gene interactions. Several RAAS genes were associated with ESRD: AGT M235T, ACE I/D, ACE G2350A, and CYP11B2 C-344T. By MDR analysis, a three-locus model (ACE ID/ACE G2350A/CYP11B2 C-344T) of gene-gene interaction was the best for predicting ESRD risk, and its maximum testing accuracy was 56.08% and maximum cross-validation consistency was 9/10. ESRD risk was higher with the simultaneous occurrence of ACE I/D DD-ACE G2350A AA. AGT, ACE, and CYP11B2 gene polymorphisms are associated with ESRD. Conclusions. The gene-gene interaction effects of ACE I/D, ACE G2350A, and CYP11B2 C-344T polymorphisms are more important than individual factors for ESRD development among Han Chinese

    Coalescence of RAGE in Lipid Rafts in Response to Cytolethal Distending Toxin-Induced Inflammation

    Get PDF
    The receptor for advanced glycation end products (RAGE) interacts with various molecules in the cell membrane to induce an inflammatory response. The cytolethal distending toxin (CDT) produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Amongst, CdtA and CdtC interact with membrane lipid rafts, by which CdtB enters the nucleus to induce pathogenesis. In this study, we first explored the relationships between RAGE, lipid rafts, and inflammation in gastrointestinal epithelial cells exposed to CDT. Our results showed that CDT activated the expression of RAGE and high mobility group box 1 (HMGB1), followed by the recruitment of RAGE into lipid rafts. In contrast, RAGE antagonist inhibited CDT-induced inflammation via the RAGE-HMGB1 axis. Disruption of lipid rafts decreased CDT-induced downstream signaling, which in turn attenuated the inflammatory response. Furthermore, in vivo studies revealed severe inflammation and upregulation of RAGE and IL-1β in the intestinal tissues of CDT-treated mice. These results demonstrate that mobilization of RAGE to lipid rafts plays a crucial role in CDT-induced inflammation

    EDEN Survey: Small Transiting Planet Detection Limits and Constraints on the Occurrence Rates for Late M Dwarfs within 15 pc

    Get PDF
    Earth-sized exoplanets that transit nearby, late spectral type red dwarfs will be prime targets for atmospheric characterization in the coming decade. Such systems, however, are difficult to find via wide-field transit surveys like Kepler or TESS. Consequently, the presence of such transiting planets is unexplored and the occurrence rates of short-period Earth-sized planets around late M dwarfs remain poorly constrained. Here, we present the deepest photometric monitoring campaign of 22 nearby late M dwarf stars, using data from over 500 nights on seven 1-2 meter class telescopes. Our survey includes all known single quiescent northern late M dwarfs within 15 pc. We use transit-injection-and-recovery tests to quantify the completeness of our survey, successfully identify most (>80%>80\%) transiting short-period (0.5-1 d) super-Earths (R>1.9RR > 1.9 R_\oplus), and are sensitive (50%\sim50\%) to transiting Earth-sized planets (1.01.2R1.0-1.2 R_\oplus). Our high sensitivity to transits with a near-zero false positive rate demonstrates an efficient survey strategy. Our survey does not yield a transiting planet detection, yet it provides the most sensitive upper limits on transiting planets orbiting our target stars. Finally, we explore multiple hypotheses about the occurrence rates of short-period planets (from Earth-sized planets to giant planets) around late M dwarfs. We show, for example, that giant planets at short periods (<1<1 day) are uncommon around our target stars. Our dataset provides some insight into occurrence rates of short-period planets around TRAPPIST-1-like stars, and our results can help test planetary formation and system evolution models, as well as guide future observations of nearby late M dwarfs.Comment: 27 pages, 11 figure

    Hybrid Surface-Enhanced Raman Scattering Substrate from Gold Nanoparticle and Photonic Crystal: Maneuverability and Uniformity of Raman Spectra

    Get PDF
    [[abstract]]A novel hybrid surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles decorated inverse opal (IO) photonic crystal (PhC) is presented. In addition to the enhancement contributed from Au nanoparticles, a desired Raman signal can be selectively further enhanced by appropriately overlapping the center of photonic bandgap of the IO PhC with the wavelength of the Raman signal. Furthermore, the lattice structure of the IO PhC provides excellent control of the distribution of Au nanoparticles to produce SERS spectra with high uniformity. The new design of SERS substrate provides extra maneuverability for ultra-high sensitivity sensor applications.[[notice]]補正完

    Roadmap on Label-Free Super-resolution Imaging

    Get PDF
    Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles that need to be overcome to break the classical diffraction limit of the label-free imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability that are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches. To this end, this Roadmap brings under the same umbrella researchers from the physics and biomedical optics communities in which such studies have often been developing separately. The ultimate intent of this paper is to create a vision for the current and future developments of LFSR imaging based on its physical mechanisms and to create a great opening for the series of articles in this field.Peer reviewe

    New therapeutic strategy for treating otitis media with effusion in postirradiated nasopharyngeal carcinoma patients

    Get PDF
    Background: Postirradiation otitis media with effusion (OME) is the most common radiotherapy-associated otologic complication associated with nasopharyngeal carcinoma (NPC). This study's aim was to evaluate the efficacy of laser myringotomy followed by intratympanic steroid injection (LMIS) for treating OME in postirradiated NPC patients. Methods: From August 2002 to January 2006, 27 newly diagnosed NPC patients who developed OME after a full course of radiotherapy were enrolled. Laser myringotomy was performed followed by once-weekly administration of steroids (0.5 mL dexamethasone at a concentration of 5.0 mg/mL) into the middle ear for 3 consecutive weeks. The success rate of dry eardrum perforation and the prognostic factors associated with OME resolution were analyzed. Results: The procedure was performed on 44 ears of 27 patients. The mean follow-up period was 37 weeks. Of the 44 ears, 23 (52.3%) developed persistent eardrum perforation, 18 (40.9%) developed recurrent OME, and three (6.8%) were disease-free on follow-up. Of the 23 ears with persistent eardrum perforation, 18 (78.3%) were diagnosed as dry perforation. The absence of pretreatment mastoiditis was an independent factor associated with OME resolution (p<0.001). Conclusion: LMIS is a quick, minimally invasive, office-based technique that can be repeatedly performed to treat highly recurrent postirradiation OME, and it results in relatively slight pain to NPC patients. Long-lasting dry eardrum perforation allows for adequate middle ear ventilation and drainage and guarantees sustained relief from symptoms. The absence of preoperative mastoiditis is a favorable prognostic factor associated with OME resolution

    Flexible, Multifunctional Micro-Sensor Applied to Internal Measurement and Diagnosis of Vanadium Flow Battery

    No full text
    The vanadium redox flow battery (VRFB) system is an emerging energy storage technology with many advantages, such as high efficiency, long life, and high safety. However, during the power-generation process, if local high temperature is generated, the rate of ions passing through the membrane will increase. In addition, it will also cause vanadium pentoxide molecules (V2O5) to exist in the solid state. Once the solid is formed, it will affect the flow of the vanadium electrolyte, which will eventually cause the temperature of the VRFB to continue to rise. According to the various physical parameters of VRFB shown in the literature, they have a significant impact on the efficiency and life of VRFB. Therefore, this research proposes to develop flexible multifunction (voltage, current, temperature, and flow) micro-sensors using micro-electro-mechanical systems (MEMS) technology to meet the need for real-time micro-diagnosis in the VRFB. The device is embedded in the VRFB of real-time microscopic sensing and diagnosis. Its technical advantages are: (1) it can simultaneously locally measure four physical quantities of voltage, current, temperature, and flow; (2) due to its mall size it can be accurately embedded; (3) the high accuracy and sensitivity provides it with a fast response time; and (4) it possesses extreme environment resistance

    Flexible Micro-Sensor Packaging and Durability for Real-Time Monitoring of Vanadium Flow Batteries

    No full text
    The reactions of vanadium redox flow batteries (VRFBs) are quite complex and the internal environment is strongly acidic. The internal voltage, current, temperature and flow distribution play a very important role in the performance of a VRFB. The VRFB, which was developed by our R&amp;D team, encountered easy leakage of electrolytes during assembly. Additionally, the strongly acidic environment can easily cause aging or failure of these VRFBs and of the micro-sensor. Therefore, this research was aimed at the need for real-time micro-diagnosis inside the VRFB. The use of micro-electro-mechanical systems (MEMS) technology was proposed so as to develop a flexible, integrated (current, voltage, flow and temperature), micro-sensor, and a durability test was conducted after packaging. Further, we performed real-time monitoring of the VRFBs. The main finding was that the encapsulation contributed to the stability of the micro-sensor without any failure due to excessive flow impacting the sensor. In the end we successfully used a 3D printed package to protect the micro-sensor
    corecore