2,352 research outputs found

    Language Transfer of Audio Word2Vec: Learning Audio Segment Representations without Target Language Data

    Full text link
    Audio Word2Vec offers vector representations of fixed dimensionality for variable-length audio segments using Sequence-to-sequence Autoencoder (SA). These vector representations are shown to describe the sequential phonetic structures of the audio segments to a good degree, with real world applications such as query-by-example Spoken Term Detection (STD). This paper examines the capability of language transfer of Audio Word2Vec. We train SA from one language (source language) and use it to extract the vector representation of the audio segments of another language (target language). We found that SA can still catch phonetic structure from the audio segments of the target language if the source and target languages are similar. In query-by-example STD, we obtain the vector representations from the SA learned from a large amount of source language data, and found them surpass the representations from naive encoder and SA directly learned from a small amount of target language data. The result shows that it is possible to learn Audio Word2Vec model from high-resource languages and use it on low-resource languages. This further expands the usability of Audio Word2Vec.Comment: arXiv admin note: text overlap with arXiv:1603.0098

    Coordinated Multicasting with Opportunistic User Selection in Multicell Wireless Systems

    Full text link
    Physical layer multicasting with opportunistic user selection (OUS) is examined for multicell multi-antenna wireless systems. By adopting a two-layer encoding scheme, a rate-adaptive channel code is applied in each fading block to enable successful decoding by a chosen subset of users (which varies over different blocks) and an application layer erasure code is employed across multiple blocks to ensure that every user is able to recover the message after decoding successfully in a sufficient number of blocks. The transmit signal and code-rate in each block determine opportunistically the subset of users that are able to successfully decode and can be chosen to maximize the long-term multicast efficiency. The employment of OUS not only helps avoid rate-limitations caused by the user with the worst channel, but also helps coordinate interference among different cells and multicast groups. In this work, efficient algorithms are proposed for the design of the transmit covariance matrices, the physical layer code-rates, and the target user subsets in each block. In the single group scenario, the system parameters are determined by maximizing the group-rate, defined as the physical layer code-rate times the fraction of users that can successfully decode in each block. In the multi-group scenario, the system parameters are determined by considering a group-rate balancing optimization problem, which is solved by a successive convex approximation (SCA) approach. To further reduce the feedback overhead, we also consider the case where only part of the users feed back their channel vectors in each block and propose a design based on the balancing of the expected group-rates. In addition to SCA, a sample average approximation technique is also introduced to handle the probabilistic terms arising in this problem. The effectiveness of the proposed schemes is demonstrated by computer simulations.Comment: Accepted by IEEE Transactions on Signal Processin

    A Microcantilever-based Gas Flow Sensor for Flow Rate and Direction Detection

    Get PDF
    The purpose of this paper is to apply characteristics of residual stress that causes cantilever beams to bend for manufacturing a micro-structured gas flow sensor. This study uses a silicon wafer deposited silicon nitride layers, reassembled the gas flow sensor with four cantilever beams that perpendicular to each other and manufactured piezoresistive structure on each micro-cantilever by MEMS technologies, respectively. When the cantilever beams are formed after etching the silicon wafer, it bends up a little due to the released residual stress induced in the previous fabrication process. As air flows through the sensor upstream and downstream beam deformation was made, thus the airflow direction can be determined through comparing the resistance variation between different cantilever beams. The flow rate can also be measured by calculating the total resistance variations on the four cantilevers.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Leveraging generative adversarial networks to create realistic scanning transmission electron microscopy images

    Full text link
    The rise of automation and machine learning (ML) in electron microscopy has the potential to revolutionize materials research through autonomous data collection and processing. A significant challenge lies in developing ML models that rapidly generalize to large data sets under varying experimental conditions. We address this by employing a cycle generative adversarial network (CycleGAN) with a reciprocal space discriminator, which augments simulated data with realistic spatial frequency information. This allows the CycleGAN to generate images nearly indistinguishable from real data and provide labels for ML applications. We showcase our approach by training a fully convolutional network (FCN) to identify single atom defects in a 4.5 million atom data set, collected using automated acquisition in an aberration-corrected scanning transmission electron microscope (STEM). Our method produces adaptable FCNs that can adjust to dynamically changing experimental variables with minimal intervention, marking a crucial step towards fully autonomous harnessing of microscopy big data.Comment: 25 pages, 6 figures, 2 table

    A Simple Model for Cavity Enhanced Slow Lights in Vertical Cavity Surface Emission Lasers

    Full text link
    We develop a simple model for the slow lights in Vertical Cavity Surface Emission Lasers (VCSELs), with the combination of cavity and population pulsation effects. The dependences of probe signal power, injection bias current and wavelength detuning for the group delays are demonstrated numerically and experimentally. Up to 65 ps group delays and up to 10 GHz modulation frequency can be achieved in the room temperature at the wavelength of 1.3 μ\mum. The most significant feature of our VCSEL device is that the length of active region is only several μ\mum long. Based on the experimental parameters of quantum dot VCSEL structures, we show that the resonance effect of laser cavity plays a significant role to enhance the group delays

    Tunable magnetic interaction at the atomic scale in oxide heterostructures

    Full text link
    We report on a systematic study of a number of structurally identical but chemically distinct transition metal oxides in order to determine how the material-specific properties such as the composition and the strain affect the properties at the interface of heterostructures. Our study considers a series of structures containing two layers of ferromagnetic SrRuO3, with antiferromagnetic insulating manganites sandwiched in between. The results demonstrate how to control the strength and relative orientation of interfacial ferromagnetism in correlated electron materials by means of valence state variation and substrate-induced strain, respectively

    RpiR Homologues May Link \u3ci\u3eStaphylococcus aureus\u3c/i\u3e RNAIII Synthesis and Pentose Phosphate Pathway Regulation

    Get PDF
    Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence determinants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway (PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformatics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues. In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence determinant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII transcription

    MicroRNA miR-378 Regulates Nephronectin Expression Modulating Osteoblast Differentiation by Targeting GalNT-7

    Get PDF
    MicroRNAs (miRNAs) are small fragments of single-stranded RNA containing 18-24 nucleotides, and are generated from endogenous transcripts. MicroRNAs function in post-transcriptional gene silencing by targeting the 3′-untranslated region (UTR) of mRNAs, resulting in translational repression. We have developed a system to study the role of miRNAs in cell differentiation. We have found that one of the miRNAs tested in our system (miR-378, also called miR-378*) plays a role in modulating nephronectin-mediated differentiation in the osteoblastic cell line, MC3T3-E1. Nephronectin is an extracellular matrix protein, and we have demonstrated that its over-expression enhanced osteoblast differentiation and bone nodule formation. Furthermore, we found that the nephronectin 3′-untranslated region (3′UTR) contains a binding site for miR-378. Stable transfection of MC3T3-E1 cells with miR-378 inhibited cell differentiation. MC3T3-E1 cells stably transfected with nephronectin exhibited higher rates of differentiation and nodule formation as compared with cells transfected with nephronectin containing the 3′UTR in the early stages of development, suggesting that endogenous miR-378 is present and active. However, in the later stages of MC3T3-E1 development, the differentiation rates were opposite, with higher rates of differentiation and nodule formation in the cells over-expressing the 3′UTR of nephronectin. This appeared to be the consequence of competition between nephronectin and UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 7 (GalNAc-T7 or GalNT7) for miR-378 binding, resulting in increased GalNT7 activity, which in turn lead to increased nephronectin glycosylation and product secretion, thereby resulting in a higher rate of osteoblast differentiation

    Effects of corner frequency on bandwidth and resonance amplitude in designing

    Get PDF
    ABSTRACT In the last decade, Lead Zirconate Titanate Oxide (PZT) thin-film actuators have received increasing attention because of their high frequency bandwidth, large actuation strength, fast response, and small size. The PZT film thickness is usually less than several microns as opposed to hundreds of microns for bulk PZT patches that are commercially available. As a result, PZT thin-film actuators pose unique vibration issues that do not appear in actuators with bulk PZT. Two major issues affecting actuator performance are the frequency bandwidth and the resonance amplitude. As an electromechanical device, a PZT thin-film actuator's bandwidth and resonance amplitude depend not only on the lowest natural frequency ! " n of the actuator's mechanical structure but also on the corner frequency

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    corecore