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RpiR Homologues May Link Staphylococcus aureus RNAIII Synthesis
and Pentose Phosphate Pathway Regulation�†
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Arkansas for Medical Sciences, Little Rock, Arkansas3

Received 3 August 2011/Accepted 7 September 2011

Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence deter-
minants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced
changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle
stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway
(PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformat-
ics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional
regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant
synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis
were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the
PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues.
In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the
agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence deter-
minant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII
transcription.

Staphylococcus aureus is an important human and animal
pathogen that is capable of infecting nearly all host anatomic
sites. The pathogenicity of S. aureus depends on its ability to
synthesize virulence factors that facilitate colonization, im-
mune evasion, and nutrient acquisition. Virulence factor syn-
thesis is controlled by a complex network of regulatory pro-
teins, including the agr quorum-sensing system and the SarA
family of regulators (6, 29). In addition, tricarboxylic acid
(TCA) cycle activity is important for the regulation of staphy-
lococcal virulence factor synthesis (33, 39–41, 48). Since the
two most common types of regulation are genetic regulation
and metabolic regulation, TCA cycle-dependent regulation
most likely occurs via one or both of these mechanisms. Ge-
netic regulation occurs through the repression or induction of
enzyme synthesis, while metabolic regulation controls enzyme
activity through the availability of substrates and cofactors. An
example of staphylococcal metabolic regulation is the synthesis
of capsular polysaccharide, which is regulated by TCA cycle
activity through the supply of phosphoenolpyruvate for gluco-
neogenesis (33). Other virulence factors, such as polysaccha-
ride intercellular adhesin (PIA), are genetically regulated by
TCA cycle activity through transcriptional repression of the

operon encoding the enzymes of PIA biosynthesis (i.e.,
icaADBC) (34, 44). This TCA cycle-dependent genetic regula-
tion likely depends on response regulators that react to meta-
bolic changes associated with TCA cycle activity fluctuations
(35, 41).

In Staphylococcus epidermidis, TCA cycle stress (i.e., any
environmental stressor, such as iron limitation, that is capable
of altering TCA cycle activity) increases the intracellular ribose
concentration, indicating that carbon flow through the pentose
phosphate pathway (PPP) is increased during TCA cycle stress
(35). This suggests that if there is a regulator that can respond
to the concentration of ribose, or another PPP metabolite, then
the activity of that regulator will likely be altered. The PPP-
responsive regulator prototype, RpiR, was first identified in
Escherichia coli as a regulator of ribose-5-phosphate isomerase
B (rpiB), which catalyzes the reversible isomerization of ribu-
lose-5-phosphate and ribose-5-phosphate (42). Members of
the RpiR family often act as transcriptional regulators of sugar
catabolism, and RpiR homologues have been identified as
repressors and activators in both Gram-negative and Gram-
positive bacteria, including E. coli, Pseudomonas putida, and
Bacillus subtilis (8, 42, 46). As sugar-responsive regulators,
members of the RpiR family of proteins have N-terminal helix-
turn-helix DNA binding motifs and C-terminal sugar isomer-
ase binding (SIS) domains (1).

TCA cycle stress alters the intracellular ribose concentration
in S. epidermidis and also alters the temporal expression of
virulence factors in S. epidermidis and S. aureus (34, 35, 39, 40).
These observations led us to hypothesize that an RpiR homo-
logue may link the PPP to virulence factor regulation in staph-
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ylococci. A search of the S. aureus strain Mu50 genome (18)
returned three open reading frames (ORFs) with significant
amino acid homology to RpiR (21 to 23% amino acid identity
and 45 to 46% amino acid similarity): SAV0317, SAV0193, and
SAV2315. For simplicity, these homologues were designated
RpiRA (SAV0317), RpiRB (SAV0193), and RpiRC (SAV2315).
To determine whether these RpiR homologues link the PPP to
virulence factor synthesis in S. aureus, three single mutants,
three double mutants, and a triple mutant of the rpiR homo-
logues were constructed in S. aureus strain UAMS-1, and the
effects on PPP activity, RNAIII transcription, capsular poly-
saccharide biosynthesis, PIA accumulation, and the ability to
form a biofilm were assessed.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The strains and plasmids used in this
study are listed in Table 1. E. coli strains were grown in 2� YT broth (36) or on
2� YT agar, and S. aureus strains were grown in tryptic soy broth (TSB) (BD
Biosciences) or on TSB containing 1.5% agar. TSB is a complex medium that
contains glucose (0.25%, wt/vol) and stachyose. Stachyose is a plant carbohydrate
that S. aureus cannot catabolize. Unless otherwise stated, all bacterial cultures
were inoculated at 1:200 from an overnight culture (normalized for growth) into
TSB, incubated at 37°C, and aerated at 225 rpm with a flask-to-medium ratio of
10:1. Antibiotics were purchased from Fisher Scientific or Sigma Chemical and,
when used, were used at the following concentrations: for E. coli, ampicillin at
100 �g/ml; for S. aureus, erythromycin at 8 or 10 �g/ml, chloramphenicol at 10
to 15 �g/ml, and tetracycline at 10 �g/ml.

Construction of S. aureus rpiR mutants. To inactivate rpiRA (ORF SAV0317),
a 2.559-kb fragment was PCR amplified using primers SAV0316-BamHI and
SAV0318-SacI (Table 2), and the product was cloned into the SmaI site of
pBluescript II KS(�) (Stratagene) to generate plasmid pYF-7. The ermB cas-
sette of pEC4 was amplified using primers pEC4ErmBNdeIF and
pEC4ErmBNdeIR (Table 2) and was ligated into the NdeI site within rpiRA of
pYF-7 to yield plasmid pYF-8. The rpiRA::ermB fragment of pYF-8 was cloned

into the BamHI and SacI sites of pTS1 to create plasmid pYF-9. The tempera-
ture-sensitive plasmid pYF-9 was isolated from S. aureus strain RN4220 and was
introduced into strain UAMS-1 by electroporation. Transformed bacteria were
used to construct the rpiRA mutant using the temperature shift method of Foster
(11).

To inactivate rpiRB (ORF SAV0193), the technique of gene splicing by over-
lap extension (15) was used to replace a 741-bp internal region of rpiRB with the
cat gene from plasmid pTS1. For PCR, genomic DNA from S. aureus strain
UAMS-1 was used as a template for the amplification of regions flanking rpiRB.
PCR primers BamHI-SAV0192-f and cat-SAV0193-r (Table 2) were used for the
amplification of a 1.5-kb region upstream of rpiRB, and a 1.5-kb region of the
rpiRB downstream region was amplified using primers cat-SAV0193-f and SacI-
SAV0195-r (Table 2). The cat gene was amplified from pTS1 using primers
SAV0193-cat-f and SAV0193-cat-r (Table 2). The resulting 3.9-kb PCR product
consisted of an internal 816-bp cat gene with DNA flanking the rpiRB gene. The
3.9-kb PCR product contained BamHI and SacI sites that were used for ligation
into pTS1-d digested with SacI and BamHI to generate pYM-4. Plasmid pYM-4
was used to construct an rpiRB mutant (UAMS-1-rpiRB::cat) by using the tem-
perature shift method of Foster (11).

Gene splicing by overlap extension was used to replace a 614-bp internal
region of rpiRC (ORF SAV2315) with the tetM gene from plasmid pJF-12 (Table
1). A 1.5-kb region upstream of rpiRC was amplified using primers BamHI-
SAV2312-f and tetM-SAV2315-r (Table 2), and primers tetM-SAV2315-f and
KpnI-SAV2316-r (Table 2) were used for amplification of a 1.6-kb downstream
region. tetM was amplified from pJF-12 using primers SAV2315-tetM-f and
SAV2315-tetM-r (Table 2). A 5.4-kb PCR product consisting of the 2.3-kb tetM
gene and DNA flanking the rpiRC gene with BamHI and KpnI sites was inserted
into pTS1-d digested with BamHI and KpnI to generate pYM-5. Plasmid pYM-5
was used to construct a strain UAMS-1 rpiRC mutant (UAMS-1-rpiRC::tetM) by
using temperature shifts. To minimize the possibility that any phenotype(s) was
the result of random mutations occurring during temperature shifts, all resulting
mutations were back-crossed into wild-type strain UAMS-1 using transducing
phage �85 (11). All mutants were verified by PCR and Southern blot analysis.
The rpiR double mutants and triple mutant were constructed using transducing
phage �85.

Construction of rpiR complementing plasmids. Plasmids pCL15 and pCL15-
ermB (Table 1), containing a Pspac promoter, were used to construct the rpiRA,

TABLE 1. Strains and plasmids used in this study

Plasmid or strain Relevant genotype and/or characteristic(s)a Source or reference

Plasmids
pBluescript II KS(�) E. coli phagemid cloning vector Stratagene
pTS1 S. aureus-E. coli temperature-sensitive shuttle vector; Ampr Camr 14
pTS1-d Derivative of pTS1 with deletion of plasmid-encoded 3� region of ermC 34
pEC4 pBluescript II KS(�) with ermB inserted into ClaI site 3
pJF12 Plasmid pCR2.1 containing tetM; Ampr Minr J. Finan and G. Archer
pYF-7 pBluescript II KS(�) containing a portion of SAV0317 This study
pYF-8 pYF-7 containing an ermB cassette inserted into the NdeI site of SAV0317 This study
pYF-9 SAV0317::ermB product from pYF-8 inserted into BamHI/SacI-digested pTS1 This study
pYM-4 Derivative of pTS1 with SAV0193::cat fragment This study
pYM-5 Derivative of pTS1 with SAV2315::tetM fragment This study
pCL15 Expression vector; derivative of pSI-1; Camr Chia Lee
pCL15-ermB Replacement of cat with ermB in expression plasmid pCL15; Ermr This study
pYF-10 pCL15 with the SAV0317 gene under the control of the Pspac promoter; Camr This study
pYF-11 pCL15-ermB with the SAV0193 gene under the control of the Pspac promoter; Ermr This study
pYF-12 pCL15 with the SAV2315 gene under the control of the Pspac promoter; Camr This study

Strains
RN4220 Restriction-negative S. aureus 30
DH5� E. coli cloning host Invitrogen
UAMS-1 S. aureus clinical isolate 13
UAMS-1-rpiRA SAV0317 insertion mutant of UAMS-1; Ermr This study
UAMS-1-rpiRB SAV0193 deletion mutant of UAMS-1; Camr This study
UAMS-1-rpiRC SAV2315 deletion mutant of UAMS-1; Minr This study
UAMS-1-rpiRAB SAV0317 SAV0193 double mutant of UAMS-1; Ermr Camr This study
UAMS-1-rpiRAC SAV0317 SAV2315 double mutant of UAMS-1; Ermr Minr This study
UAMS-1-rpiRBC SAV0193 SAV2315 double mutant of UAMS-1; Camr Minr This study
UAMS-1-rpiRABC SAV0317 SAV0193 SAV2315 triple mutant of UAMS-1; Ermr Camr Minr This study

aAmpr, ampicillin resistant; Camr, chloramphenicol resistant; Ermr, erythromycin resistant; Minr, minocycline resistant.
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rpiRB, and rpiRC complementation plasmids pYF-10, pYF-11, and pYF-12. The
promoterless genes from S. aureus strain UAMS-1 were PCR amplified using the
primers listed in Table 2 and were ligated into plasmid pCL15 or pCL15-ermB.
Plasmids were isolated from S. aureus strain RN4220 and were electroporated
into the UAMS-1 rpiRA, rpiRB, and rpiRC mutants.

Northern blot analysis. To determine whether rpiR inactivation affected the
transcription of PPP genes, Northern blot analysis was performed on ribose
5-phosphate isomerase A (rpiA) and glucose-6-dehydrogenase (G6PD) (zwf;
ORF SAV1505). RNAIII transcript levels were also evaluated in order to de-
termine the effect of rpiR inactivation on the agr system. Northern blotting was
performed as described previously (36), except that total RNA was isolated using
the FastRNA Pro Blue kit (Qbiogene) and was purified using an RNeasy kit
(Qiagen). Probes for Northern blotting were generated by PCR amplification of
unique internal regions of RNAIII, rpiA, and zwf (Table 2) and were labeled
using the North2South random prime labeling kit (Pierce). Detection was per-
formed using the chemiluminescent nucleic acid detection module (Pierce).

Glucose-6-dehydrogenase activity assay. To determine whether rpiR inactiva-
tion affected PPP activity, G6PD activity was measured as described previously
(7). Protein concentrations were determined using a modified Lowry assay
(Pierce Chemical).

Western blot analysis. To determine whether rpiR inactivation affected protein
A biosynthesis, protein A was collected as described previously (45), and West-
ern blot analysis was performed (43).

Hemolytic assay. Strain UAMS-1 is lysogenized with an hlb-converting phage
and has a nonsense mutation in hla; hence, it does not produce the major

hemolysins alpha-toxin and beta-toxin (4). The mRNA for delta-toxin is con-
tained within RNAIII (16). To determine whether inactivation of any rpiR ho-
mologue altered delta-toxin accumulation, a semiquantitative microtiter plate
assay was carried out as described previously (10). Briefly, horse red blood cells
(RBCs; Colorado Serum Company) were washed three times in phosphate-
buffered saline (PBS) (pH 7.2) and were suspended at 2% (vol/vol) in PBS.
Bacteria were grown in TSB for 15 h and were then centrifuged at 16,100 � g for
5 min; supernatants were collected, and 2-fold serial dilutions were made in PBS.
Hemolytic assays were started by mixing 100 �l of freshly prepared 2% horse
RBCs with 100 �l of serial 2-fold dilutions of the appropriate culture superna-
tant. The microtiter plates were incubated at 37°C for 30 min, followed by 12 h
at 4°C. After incubation, the supernatant fluids were collected, and hemoglobin
release was measured at 595 nm. Each experiment was repeated three times, and
the mean and standard error of the mean (SEM) were calculated.

Polystyrene primary attachment assay. The primary attachment assay was
performed as described by Lim et al. (19). Briefly, bacterial cultures (2 h post-
inoculation) were diluted into TSB to yield approximately 300 CFU. Bacteria
were poured onto polystyrene petri dishes (Fisher Scientific) and were incubated
at 37°C for 30 min. Following incubation, the petri dishes were rinsed three times
with sterile PBS (pH 7.5) and were covered with 15 ml of TSB containing 0.8%
agar maintained at 48°C. The percentage of bacteria attached to the polystyrene
was defined as the number of CFU remaining in the petri dishes after washing
compared to the number of CFU in unwashed TSB plates. The experiment was
repeated three times, and the mean and SEM were calculated.

TABLE 2. Primers used in this study

Primer target Primer designation Nucleotide sequence (5�–3�)

SAV0317 SAV0316-BamHI GCTGGATCCCGACTGAACAATGAACGCCTAAGTC
SAV0318-SacI CCTGAGCTCATCAACGCCGGACAACAAAAGTG

ermB pEC4ErmBNdeI-f GCGCATATGCGTTAGATTAATTCCTACCAGTGAC
pEC4ErmBNdeI-r GCGCATATGCTCATAGAATTATTTCCTCCCG

SAV0193 BamHI-SAV0192-f CCAGGATCCAGAACGAATTATTGCTGCAGTAGG
cat-SAV0193-r CCACTTTATCCAATTTTCGTTTGTTGTTCACCGTCATATCAATGATTTTATGTGG

cat SAV0193-cat-f CCACATAAAATCATTGATATGACGGTGAACAACAAACGAAAATTGGATAAAGTGGG
SAV0193-cat-r GCAAGATGCTTCCGGTAATTATCAAGCGACTGTAAAAAGTACAGTCGGC

SAV0193 cat-SAV0193-f GCCGACTGTACTTTTTACAGTCGCTTGATAATTACCGGAAGCATCTTGC
SacI-SAV0195-r GCAGAGCTCGTTGAATAAGTGCTTCTACCGCATAC

SAV2315 BamHI-SAV2312-f CCAGGATCCGATTCCTAAACTATGGAGTCGATGGG
tetM-SAV2315-r CGTAAGAGCATATTTGTAAAGGAATCTCCGAGACCTCATTTTAATCACCTTTTGAGG

tetM SAV2315-tetM-f CCTCAAAAGGTGATTAAAATGAGGTCTCGGAGATTCCTTTACAAATATGCTCTTACG
SAV2315-tetM-r GAAGTTGTTGCTCCCATATGCATCCGATCTCCTCCTTTCCACTTTAATTC

SAV2315 tetM-SAV2315-f GAATTAAAGTGGAAAGGAGGAGATCGGATGCATATGGGAGCAACAACTTC
KpnI-SAV2316-r GAAGGTACCAATGGATTGTAGTTGGTATGAGTGAG

RNAIII SARNAIII-f GAAGGAGTGATTTCAATGGCACAAG
SARNAIII-r GGCTCACGACCATACTTATTATTAAGGG

rpiA rpiaf GTGACATGACGCTGGGAATTGG
rpiar GTATCCTGTCTCAAACACACCTGTCAG

SAV1505 SAV1505f GCACCACAATTCTTTGGCGTTATTTC
SAV1505r AGTACGAATATAGAATGGTACACCAGCC

SAV0317 BamHI-SD-rpiR-f CAAGGATCCATTAAGATGAAGGGGTGACACAATG
SacI-rpiR-r CAAGAGCTCAATCACGATGATTGTCTACAGTTGC

SAV0193 BamHI-SAV0193-f CTAGGATCCATGACAAATATTTTATATCGCATTGATAAACAGTTGAG
SAV0193-r CAAACAACTGAATCACATCAAAAACTTCAATTG

SAV2315 BamHI-SAV2315-f CTAGGATCCATGTCAAACGTACTAACAGAAATAGATAGTCAATATCC
SAV2315-r GCGTATGTTATACAAGATAAAAGACATGTAAGCTTTG
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Capsule immunoblot assay. To determine whether rpiR inactivation altered
capsule biosynthesis, capsule accumulation was quantified by immunoblotting as
described previously (22), except that immunoblots were developed using a
chemiluminescent horseradish peroxidase (HRP) substrate (Millipore). For the
capsule blots, bacteria (1.25 optical density at 660 nm [OD660] units) were
harvested after overnight growth in tryptic soy broth at 37°C, with a flask-to-
medium ratio of 20:1, and were aerated at 225 rpm.

PIA immunoblot assay. PIA accumulation was determined after 2, 4, and 6 h
of growth as described previously (47).

Biofilm formation in flow cell chambers. S. aureus strains were grown in flow
cell chambers (Stovall Life Science) as described previously (47). To assess
bacterial growth, at 12 h postinoculation and every 4 h thereafter, effluent
samples were collected, the pH was measured, and the chamber was photo-
graphed.

Proteomic analyses. Bacterial cells (2 h and 6 h postinoculation) were har-
vested by centrifugation and were suspended in 1.0 ml of lysis buffer containing
50 mM ammonium bicarbonate, 8 M urea, and 1.5 mM phenylmethylsulfonyl
fluoride (PMSF). The samples were homogenized for 40 s at 6.0 m/s in a
FastPrep instrument (MP Biomedical), and the lysate was centrifuged for 5 min
at 20,800 � g and 4°C. Bacterial proteins were subjected to in-solution trypsin
digestion as described previously (28). Briefly, the proteins were reduced with 10
mM dithiothreitol and were alkylated with 40 mM iodoacetamide, followed by
trypsin (Roche) digestion (trypsin/protein ratio, 1:50) overnight at 37°C. The
tryptic peptides were desalted and concentrated using PepClean C18 spin col-
umns according to the manufacturer’s instructions (Thermo Scientific).

Fully automated 2-dimensional (2D) chromatographic experiments were per-
formed with an UltiMate 3000 Proteomics multidimensional liquid chromatog-
raphy (MDLC) system (Dionex Corporation) integrated with a nanospray source
and an LCQ (liquid chromatography quadrupole) Fleet ion trap mass spectrom-
eter (Thermo Scientific). The first-dimension LC separation (strong cation-ex-
change [SCX] chromatography) with fraction collection was followed by the
second-dimension LC separation (reverse-phase chromatography) and detection
by tandem mass spectrometry (MS-MS). The first-dimension separation was
performed on an SCX column (polysulfoethyl; inside diameter [i.d.], 1 mm;
length, 15 cm; particle size, 5 �m; pore size, 300 Å; Dionex). Twenty microliters
of the sample was loaded onto the first-dimension SCX column and was eluted
using a salt gradient (0 to 600 mM) for 45 min. Based on the UV absorbance of
the eluted peptides, selected fractions were subjected to second-dimension anal-
ysis. The second-dimension separation included on-line sample preconcentration
and desalting using a monolithic C18 trap column (PepMap; i.d., 300 �m; length,
5 mm; particle size, 5 �m; pore size, 100 Å; Dionex). The sample was loaded onto
the monolithic trap column at a flow rate of 300 nl/min. The desalted peptides
were then eluted and separated on a C18 PepMap column (i.d., 75 �m; length, 15
cm; particle size, 3 �m; pore size, 100 Å) by applying an acetonitrile (ACN)
gradient (ACN plus 0.1% formic acid; 90-min gradient at a flow rate of 300
nl/min) and were introduced into the mass spectrometer using the nanospray
source. The LCQ Fleet mass spectrometer was operated with the following
parameters: nanospray voltage, 2.0 kV; heated capillary temperature, 200°C;
full-scan m/z range, 400 to 2,000. The mass spectrometer was operated in the
data-dependent mode with 4 MS-MS spectra for every full scan, 5 microscans
averaged for full scans and MS-MS scans, a 3 m/z isolation width for MS-MS
isolations, and 35% collision energy for collision-induced dissociation.

The MS-MS spectra were searched against the S. aureus MRSA252 database
using MASCOT (version 2.2; Matrix Science). The database search criteria were
as follows: enzyme, trypsin; missed cleavages, 2; mass, monoisotropic; fixed
modification, carbamidomethyl (C); peptide tolerance, 1.5 Da; MS-MS fragment
ion tolerance, 1 Da. Probability assessment of peptide assignments and protein
identifications were accomplished by Scaffold (version 3.0; Proteome Software
Inc.). Only peptides with �90% probability were considered. Criteria for protein
identification included the detection of at least 2 unique identified peptides and
a protein probability score of �90%. Relative quantitation of proteins was done
by use of the label-free method of spectral counting (20) using the normalized
spectral counts for each protein. For ease of reference, the NCBI GenInfo
Identifier (gi) numbers have been included in this report and in Tables S1 and S2
in the supplemental material.

Hydrogen peroxide susceptibility assay. To determine if rpiR inactivation
affects hydrogen peroxide susceptibility, S. aureus strain UAMS-1 and all of the
rpiR mutant strains were grown in TSB for 15 h and were then diluted to an
OD600 of 0.05 into sterile medium containing increasing concentrations of hy-
drogen peroxide (Fisher Scientific). Cultures were grown at 37°C with shaking
(225 rpm) for 4 h. Bacterial densities were determined by measuring the OD600.

RESULTS

Characterization of rpiR mutants. Analysis of the Mu50
genome (18) revealed the presence of three RpiR homologues:
RpiRA (SAV0317), RpiRB (SAV0193), and RpiRC
(SAV2315). Each rpiR homologue was deleted either individ-
ually or in tandem with one or both of the other rpiR homo-
logues in strain UAMS-1 (Table 1). To assess the effects of
inactivation of the rpiR homologue genes on growth, the opti-
cal densities and pH of the culture medium (TSB) were mea-
sured over time (Fig. 1). Inactivation of any single rpiR homo-
logue in UAMS-1 did not alter the growth rate, growth yield,
or pH profile of the culture medium (Fig. 1A). Similarly, the
double and triple mutants had growth rates and growth yields
equivalent to those of the wild-type strain UAMS-1 (Fig. 1B).
Of note, the pH profile of the culture medium for the triple
mutant showed an increased rate of alkalization relative to that
for the wild-type strain, suggesting that this strain had an in-
creased rate of acetic acid utilization or an increase in ammo-
nia generation due to amino acid catabolism (Fig. 1B). These
results demonstrate that the growth of the rpiR mutants is
equivalent to that of the isogenic wild-type strain.

RpiR homologues regulate PPP activity. As stated above,
RpiR was first identified in E. coli as a repressor of the PPP
gene rpiB (42). Similarly, the Pseudomonas putida RpiR ho-

FIG. 1. Deletion of any rpiR homologue in strain UAMS-1 does
not alter the growth profile in TSB medium. (A) Growth curves and
culture medium pH profiles are shown for strain UAMS-1 and for the
UAMS-1-rpiRA, UAMS-1-rpiRB, and UAMS-1-rpiRC mutants
(A) and the UAMS-1-rpiRAB, UAMS-1-rpiRAC, UAMS-1-rpiRBC,
and UAMS-1-rpiRABC mutants (B).
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mologue HexR regulates zwf, which codes for glucose 6-phos-
phate dehydrogenase (G6PD), the rate-controlling enzyme of
the PPP (8). These data led us to hypothesize that one or more
of the RpiR homologues in S. aureus would regulate the tran-
scription of PPP genes. To test this hypothesis, transcription of
the PPP genes rpiA (ribose-5-phosphate isomerase A) and zwf
(sav1505; coding for G6PD) in the rpiR mutant strains was
assessed by Northern blot analysis of total RNA isolated dur-
ing the exponential phase of growth (2 h) (Fig. 2A and data not
shown). Deletion of rpiRB or rpiRC decreased the transcription
of both rpiA and zwf relative to that in the parental strain
UAMS-1; however, rpiRA inactivation had only a minor effect
on rpiA and zwf mRNA levels (Fig. 2A and data not shown).
Complementation of the UAMS-1 rpiRB and rpiRC mutants
increased the levels of rpiA mRNA (Fig. 2B), confirming that
the transcriptional changes are due to the inactivation of the
mutated rpiR genes. Interestingly, deletion of rpiRA in either

an rpiRB or an rpiRC mutant strain restored the level of rpiA
mRNA to that found in strain UAMS-1 (Fig. 2A), suggesting
an antagonistic effect between RpiRA and both RpiRB and
RpiRC. Because zwf mRNA migrates on an agarose gel near
rRNA, and in order to confirm the Northern blot data, the
activity of G6PD was assessed in the wild-type and rpiR mutant
strains. In agreement with the Northern blot data, mutation of
rpiRB or rpiRC led to decreased G6PD enzymatic activity in
the exponential-growth phase (2 h) (see Fig. S1 in the supple-
mental material) relative to that for the wild-type strain
UAMS-1. Also consistent with the Northern blot data are the
antagonistic effects of RpiRA on G6PD activity in both the
rpiRB and rpiRC mutant backgrounds. In contrast to the find-
ings for the exponential-growth phase, only rpiRB inactivation
significantly decreased G6PD enzymatic activity during the
post-exponential-growth phase (8 h) relative to that for the
wild-type strain (see Fig. S1). Overall, these data demonstrated
that RpiRB and RpiRC have a positive regulatory function in
PPP regulation and that RpiRA is antagonistic to this function.

Inactivation of rpiRC delays biofilm development and de-
creases the synthesis of cell wall-associated virulence determi-
nants. Nuclear magnetic resonance (NMR) metabolomic anal-
ysis indicated that the intracellular ribose concentration in S.
epidermidis changes in response to stressors that induce biofilm
formation and PIA accumulation (35). Because the RpiR ho-
mologues have been reported to respond to PPP intermediates
in other bacteria (8), we assessed the effects of rpiR inactiva-
tion on biofilm formation and PIA accumulation (Fig. 3A and
data not shown). The deletion of any rpiR homologue, singly or
in tandem, did not significantly alter the accumulation of PIA
(data not shown). In S. aureus, biofilms can form in the absence
of PIA biosynthesis (2); therefore, the lack of any significant
effect of rpiR inactivation on PIA accumulation did not pre-
clude the possibility that one or more of the RpiR homologues
would affect biofilm formation. Consistent with this premise,
deletion of rpiRC delayed biofilm maturation (Fig. 3A). While
biofilm maturation was delayed, the gross morphologies of the
biofilms formed by the wild-type and rpiRC mutant strains
were similar after 24 h of growth. The delay in biofilm matu-
ration and the absence of any attenuation of PIA accumulation
were consistent with a defect in bacterial attachment or adhe-
sion. To determine whether inactivation of rpiRC decreased
adhesin synthesis, polystyrene attachment assays were used to
assess the abilities of wild-type and rpiR mutant strains to
adhere to surfaces (Fig. 3B). In agreement with the delay in
biofilm formation, strains containing a mutation in rpiRC had
a significantly decreased ability to attach to polystyrene relative
to that of the parental strain (Fig. 3B). Taken together, these
data suggest that the synthesis of cell wall-associated adhesins
was decreased by rpiRC inactivation.

The association of protein A with biofilm formation (26) and
the decreased ability of rpiR mutant strains to adhere to poly-
styrene suggested that cell-associated adhesin synthesis was
impaired by inactivation of one or more RpiR homologues.
Protein A is synthesized primarily during the exponential-
growth phase and is considered representative of cell wall-
associated protein synthesis. To determine whether rpiR inac-
tivation altered the exponential-growth-phase expression of
protein A and potentially of other cell wall-associated proteins,
the exponential-growth-phase accumulation of protein A was

FIG. 2. Inactivation of rpiR homologues alters rpiA mRNA accu-
mulation. (A) Northern blot analysis demonstrating that inactivation
of rpiRB or rpiRC decreases the transcription of ribose phosphate
isomerase A (rpiA). (B) Northern blot analysis demonstrating that
complementation of rpiRB or rpiRC restores rpiA transcription.
Ethidium bromide-stained agarose gels showing 23S and 16S rRNA
are included in each panel to demonstrate the equivalent loading of
total RNA. The results are representative of at least two independent
experiments.
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assessed by Western blotting (Fig. 3C). Mutations in either
rpiRA or rpiRB did not affect the accumulation of protein A
relative to that for strain UAMS-1; however, inactivation of
rpiRC completely inhibited the exponential-growth-phase ac-
cumulation of protein A (Fig. 3C). Interestingly, rpiRA inacti-
vation did not antagonize the expression of protein A in the
rpiRC mutant background, suggesting that the antagonistic ef-
fects of RpiRA are confined to regulation of the PPP. In total,
these data suggest that RpiRC acts as a regulatory bridge
between the PPP and virulence factor synthesis in S. aureus.

RpiRC represses RNAIII transcription or message stability.
RNAIII is the effector RNA of the agr quorum-sensing
system and a negative regulator of protein A (spa) (29).
Mutation of rpiRC eliminated the exponential-growth-phase
accumulation of protein A (Fig. 3C), raising the possibility
that RNAIII transcription or stability was increased. To
determine whether rpiR inactivation affected RNAIII levels,
Northern blot analysis of RNAIII was performed on all rpiR
mutant strains throughout a 12-h growth cycle (Fig. 4A and
B). As expected, rpiRC inactivation increased the RNAIII
transcript level relative to that for the parental strain during
the exponential-growth phase (2 h) (Fig. 4A). Complemen-
tation of the rpiRC mutation with pYF-12 decreased the
level of RNAIII relative to that for the rpiRC mutant strain,
confirming that the increased RNAIII level was due to
rpiRC inactivation (Fig. 4B). In agreement with the results
of the Western blot analysis of protein A and the attachment
assays (Fig. 3B and C), we did not observe an antagonistic

effect of rpiRA inactivation on the exponential-growth-phase
(2 h) transcription or stability of RNAIII in either an rpiRB
or an rpiRC mutant background (Fig. 4A). Although
RNAIII levels were largely independent of RpiRA or
RpiRB in the exponential-growth phase, rpiRB inactivation
increased the post-exponential-growth-phase RNAIII tran-
script levels (Fig. 4B). RNAIII is both a riboregulator and
the coding sequence for delta-toxin (16); therefore, if
RNAIII levels are increased, it is likely that delta-toxin
synthesis is increased. (Strain UAMS-1 is lysogenized with
an hlb-converting phage and has a nonsense mutation in hla;
hence, it does not produce the major hemolysins alpha-toxin
and beta-toxin [4].) By use of a hemolytic titer assay, the
increased RNAIII levels correlated with an increase in he-
molysis activity (Fig. 5A). In total, these data indicate that
RpiRC represses RNAIII transcription during the exponen-
tial-growth phase, while RpiRB represses RNAIII transcrip-
tion during the post-exponential-growth phase.

In S. aureus, strain-dependent differences in the regulation
of virulence determinant biosynthesis have been reported (4,
49). To determine whether the effect of RpiR inactivation on
RNAIII transcription was common to S. aureus strains from
divergent genetic backgrounds, the rpiRB and rpiRC mutations
were transduced into S. aureus strain SA564 (38), and North-
ern blot analysis of RNAIII was performed (see Fig. S2 in the
supplemental material). As with strain UAMS-1, inactivation
of rpiRC in strain SA564 derepressed RNAIII transcription
during the exponential-growth phase and had no effect during

FIG. 3. Deletion of rpiRC delays biofilm maturation by inhibiting adhesion and the synthesis of cell-associated virulence determinants.
(A) Growth of S. aureus strains UAMS-1, UAMS-1-rpiRA, UAMS-1-rpiRB, UAMS-1-rpiRC, and UAMS-1-rpiRABC in three-chamber flow cells.
Bacterial strains were grown at 37°C with a continuous flow (0.5 ml min�1 per chamber) of TSB containing 0.5% glucose and 3% NaCl. The results
are representative of at least two independent experiments. (B) Adhesion of S. aureus strains to polystyrene. The data are presented as means and
SEMs for three independent experiments. Significant differences, as determined using Student’s t test, are indicated by asterisks (��, P � 0.01; �,
P � 0.05). (C) Western blot analysis of protein A. The blot is representative of three independent experiments.
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the post-exponential-growth phase (see Fig. S2). Similarly, in-
activation of rpiRB in strain SA564 had a minimal effect on
RNAIII transcript levels during the exponential-growth phase.
In contrast to the finding for strain UAMS-1, inactivation of
rpiRB in strain SA564 had no apparent effect on RNAIII tran-
scription during the post-exponential-growth phase. These
data demonstrate that RpiRC represses the exponential-
growth-phase level of RNAIII in divergent genetic back-
grounds.

Inactivation of rpiRC dramatically increases capsule accu-
mulation. RNAIII is a positive regulator of capsule gene (cap)
transcription (9, 21, 32); thus, an increase in RNAIII levels
should correlate with an increase in capsule biosynthesis. To
determine whether rpiR inactivation affects capsule biosynthe-
sis, capsule accumulation was assessed by capsule immunoblot-
ting. In agreement with the increased RNAIII levels, inactiva-
tion of all three rpiR genes increased capsule accumulation
(Fig. 5B); however, the increased accumulation of capsule was

FIG. 4. Deletion of rpiRC increases the transcription and/or stability of RNAIII. (A) Temporal Northern blot analysis of RNAIII. (B) Com-
plementation of rpiR homologues moderately restores RNAIII levels after 2 h of growth. Ethidium bromide-stained agarose gels showing 23S and
16S rRNA are included in each panel to demonstrate the equivalent loading of total RNA. All Northern blotting was performed at least twice using
independently isolated total RNA.
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most apparent in strains with a mutation in rpiRC. These data
strongly suggest that the RpiR-dependent derepression of
RNAIII facilitates virulence determinant expression and that
the RpiR proteins act as a bridge between the PPP and viru-
lence factor synthesis.

Inactivation of rpiRC alters the proteome. To identify
changes in cytosolic protein content in strain UAMS-1 and
the rpiRC mutant strains, cell-free lysates were prepared
from strains UAMS-1, UAMS-1-rpiRC, and UAMS-1-
rpiRABC grown to the exponential and post-exponential
phases of growth and were analyzed by 2D LC–MS-MS (see
Tables S1 and S2 in the supplemental material). Although
rpiRC inactivation resulted in numerous proteomic changes,
we were specifically interested in changes to PPP enzymes
and proteins that might clarify the increased RNAIII tran-
script levels. Proteomic analysis showed that the PPP en-
zymes transaldolase (gi	49242155) and ribose-phosphate
pyrophosphokinase (gi	49240856) were present at lower

concentrations in strains UAMS-1-rpiRC and UAMS-1-
rpiRABC than in strain UAMS-1, consistent with regulation
of the PPP by RpiRC. Interestingly, deletion of rpiRC in-
creased the accumulation of ribosomal proteins (see Tables S1
and S2 in the supplemental material); however, the reason for
this remains unknown. Proteomic analysis also suggested that
there was an increase in the levels of proteins associated with

B; specifically, inactivation of rpiRC increased the concentra-
tions of the alkaline shock protein A (Asp23; gi	49242531) and
RsbU (gi	49242422) (see Tables S1 and S2). Because asp23
transcription is controlled exclusively by 
B, Asp23 is used as
an indicator of 
B activity (17, 27). RsbU is a phosphatase that
dephosphorylates (activates) the anti-anti-sigma factor RsbV,
which then binds the anti-sigma factor RsbW in a competitive
manner to increase the concentration of free 
B (12). In ad-
dition to regulating the transcription of asp23, 
B regulates the
transcription of sarA from the sar P3 promoter (27). SarA is a
positive effector of agrACDB and RNAIII transcription (5).
Inactivation of rpiRC increased RNAIII levels relative to those
in the wild-type strain (Fig. 4), suggesting that rpiRC inactiva-
tion might increase the availability of SarA. Consistent with
this suggestion, rpiRC inactivation increased the cytosolic con-
centration of SarA (gi	49240975) during both the exponential-
and post-exponential-growth phases (see Tables S1 and S2).
These data suggest that the increased RNAIII levels in the
rpiRC mutants are due to increased availability of 
B, which
increases sarA transcription and translation, resulting in in-
creased RNAIII transcription.

Inactivation of rpiRC decreases peroxide susceptibility. In
some strains of S. aureus, 
B has been implicated in suscepti-
bility to oxidative stress (12, 17). This observation and the fact
that strain UAMS-1-rpiRC had higher ferritin and catalase
levels than strain UAMS-1 (see Tables S1 and S2 in the sup-
plemental material) led us to assess the susceptibilities of
strain UAMS-1 and the rpiR mutants to peroxide stress (Fig.
6). As expected, inactivation of rpiRC significantly decreased
the susceptibilities of strains UAMS-1-rpiRC, UAMS-1-
rpiRAC, UAMS-1-rpiRBC, and UAMS-1-rpiRABC to hydrogen
peroxide relative to that of strain UAMS-1 (Fig. 6). Taken
together, these data demonstrate that the S. aureus RpiR fam-

FIG. 5. Inactivation of rpiR homologues alters virulence factor syn-
thesis. (A) Hemolytic activities of culture supernatants from strain
UAMS-1 and the rpiR mutant strains against washed rabbit erythro-
cytes. The data are presented as the means and SEMs for three inde-
pendent experiments. (B) Immunoblotting for capsule polysaccharide.
The blot is representative of at least two independent experiments.

FIG. 6. Deletion of rpiRC decreases the susceptibility of S. aureus
strains to hydrogen peroxide. Data are presented as the means and
SEMs for three independent experiments.

6194 ZHU ET AL. J. BACTERIOL.



ily of proteins functions in cell survival under conditions of
oxidative stress.

DISCUSSION

Three central metabolic pathways (i.e., glycolysis, the PPP,
and the TCA cycle) provide the 13 biosynthetic intermediates
needed to synthesize all macromolecules produced in bacteria.
By default, virulence determinants are synthesized from these
13 biosynthetic intermediates of central metabolism; hence,
virulence determinant synthesis is dependent on the endoge-
nous or exogenous availability of these intermediates or by-
products of these intermediates. Because of the importance of
these intermediates, bacteria have evolved metabolite-respon-
sive regulators (e.g., CcpA, CodY) that “sense” the availability
of these intermediates or compounds derived from them (41).
Not only do these metabolite-responsive regulators function to
maintain metabolic homeostasis; many also regulate virulence
determinant synthesis (41). Although metabolite-responsive
regulators that respond to changes in the levels of glycolytic
and TCA cycle intermediates or derivatives have been identi-
fied in S. aureus, none that respond to changes in the levels of
PPP intermediates have been identified. To that end, three
RpiR family members, RpiRA, RpiRB, and RpiRC, were
identified and inactivated in S. aureus strain UAMS-1, and the
phenotypic and regulatory changes associated with each RpiR
homologue were characterized.

PPP regulation. RpiRB and RpiRC positively regulate the
exponential-growth-phase transcription of the PPP genes rpiA
and zwf (Fig. 2A). In addition, RpiRC positively affects the
expression of transaldolase and ribose-phosphate pyrophos-
phokinase (see Tables S1 and S2 in the supplemental mate-
rial). Although RpiRB and RpiRC are paralogues, there ap-
pears to be minimal overlap in function between the two
regulatory proteins, since inactivation of either rpiRB or rpiRC
decreases the transcription of rpiA and zwf to the same extent
(Fig. 2A). In other words, RpiRB does not compensate for the
loss of RpiRC, and RpiRC does not compensate for the loss of
RpiRB. Interestingly, RpiRA has only a slight effect on rpiA
and zwf transcription; however, it does antagonize the regula-
tory effects of both RpiRB and RpiRC (Fig. 2A). In double
mutants, inactivation of rpiRA restores the transcription of rpiA
and, to a lesser extent, zwf to near-wild-type levels. Interest-
ingly, this antagonism involves only RpiRB- and RpiRC-de-
pendent regulation of rpiA and zwf, not RpiRC-dependent
regulation of RNAIII (Fig. 4A and B). Taken together, these
data confirm that the S. aureus RpiR homologues positively
affect PPP transcription and activity.

RNAIII regulation. Synthesis of RNAIII is under the control
of the agr cell density-sensing system (31); hence, RNAIII
transcription usually begins late in the exponential phase of
growth (�4 h) (Fig. 4A). The growth rates and growth yields of
the UAMS-1 rpiRA, rpiRB, and rpiRC mutant strains are equiv-
alent to those of the parental strain (Fig. 1A); thus, it was
surprising to find that the transcription of RNAIII was dere-
pressed during the early-exponential-growth phase (2 h) in
strain UAMS-1-rpiRC compared to that in strain UAMS-1
(Fig. 4A). This RpiRC-dependent derepression persists into
the post-exponential-growth phase (4 to 6 h) but declines
thereafter (Fig. 4A). The more likely explanations for the

RpiRC-dependent derepression of RNAIII transcription are
either an increase in the level of expression of the agr cell
density-sensing system or an agr-independent increase in the
level of RNAIII transcription. Proteomic analysis of the cyto-
solic fractions of strains UAMS-1, UAMS-1-rpiRC, and
UAMS-1-rpiRABC (see Tables S1 and S2 in the supplemental
material) demonstrated that rpiRC inactivation increased the
intracellular SarA concentration during the exponential (2 h)-
and post-exponential (6 h)-growth phases relative to that in the
parental strain UAMS-1. The increased level of SarA is likely
mediated by an increase in the level of free 
B due to enhanced
RsbU phosphatase activity (gi	49242422) (see Tables S1 and S2
in the supplemental material). We speculate that the increase
in the level of free 
B is a response to increased oxidative
stress. This increase in oxidative stress would occur as carbon
flow through glycolysis is increased due to the diversion of
carbon away from the PPP. This leads to an increase in the
reducing potential, which requires the oxidation of dinucle-
otides via the electron transport chain to maintain redox
homeostasis. An increase in electron transport chain activity
would result in an increase in the release of reactive oxygen
species. This speculation is supported by proteomic analysis,
which revealed increases in the levels of enzymes of glycol-
ysis and the electron transport chain in the rpiRC and
rpiRABC mutants relative to those in the wild-type strain.
Consistent with an increase in free 
B levels, proteomic
analysis also revealed that rpiRC inactivation resulted in a
greater accumulation of the 
B-regulated alkaline shock
protein A (gi	49242531) in strain UAMS-1-rpiRC. These data
suggest that the increased level of RNAIII in strains lacking
RpiRC is due to an increase in the SarA-mediated transcrip-
tion of RNAIII. While these data form the basis for one ex-
planation of how RpiRC can regulate virulence determinant
synthesis, it is an incomplete explanation, because data regard-
ing known regulators, such as Rot (25), were not present in the
proteomic analysis. That being said, these data confirm a direct
linkage between central metabolism (i.e., the PPP) and three
major virulence regulators (SarA, 
B, and RNAIII) in S. au-
reus. Finally, these data demonstrate that putative metabolite-
responsive regulators can override the normal quorum-sens-
ing-dependent temporal pattern of virulence determinant
synthesis.

Conclusions. Richard Novick postulated in a “black-box”
model (29) that an energy signal derived from intermediary
metabolism would, in an unknown (i.e., black-box) fashion,
regulate the transcription of the agr cell density-sensing system.
Since the introduction of this black-box model, several regu-
lators (e.g., CcpA and CodY) that link metabolism to the
regulation of virulence determinants have been identified (re-
viewed in reference 41). In the present study, it was observed
that RNAIII synthesis is coregulated with central metabolism,
specifically the PPP, through the direct or indirect action of
three RpiR family regulators. Although the black-box model is
largely accurate, based on data presented here and in other
studies (23, 24, 37), the energy signal responsible for regulating
the transcription of agr is more than likely a carbon signal.

In Pseudomonas putida, the DNA binding activity of the
RpiR homologue HexR is modulated by the Entner-Doudoroff
pathway intermediate 2-keto-3-deoxy-6-phosphogluconate (8).
The three S. aureus RpiR homologues all have sugar isomerase
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binding domains, suggesting that their regulatory activity may
be controlled by intermediates of the PPP. Collaborative stud-
ies are under way to identify the metabolites to which the RpiR
homologues bind; hopefully, this information will fill in one of
the black boxes in S. aureus virulence factor regulation.
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