5,289 research outputs found
Optical Properties of Organometallic Perovskite: An ab initio Study using Relativistic GW Correction and Bethe-Salpeter Equation
In the development of highly efficient photovoltaic cells, solid perovskite
systems have demonstrated unprecedented promise, with the figure of merit
exceeding nineteen percent of efficiency. In this paper, we investigate the
optical and vibrational properties of organometallic cubic perovskite
CH3NH3PbI3 using first-principles calculations. For accurate theoretical
description, we go beyond conventional density functional theory (DFT), and
calculated optical conductivity using relativist quasi-particle (GW)
correction. Incorporating these many-body effects, we further solve
Bethe-Salpeter equations (BSE) for excitons, and found enhanced optical
conductivity near the gap edge. Due to the presence of organic methylammonium
cations near the center of the perovskite cell, the system is sensitive to low
energy vibrational modes. We estimate the phonon modes of CH3NH3PbI3 using
small displacement approach, and further calculate the infrared absorption (IR)
spectra. Qualitatively, our calculations of low-energy phonon frequencies are
in good agreement with our terahertz measurements. Therefore, for both energy
scales (around 2 eV and 0-20 meV), our calculations reveal the importance of
many-body effects and their contributions to the desirable optical properties
in the cubic organometallic perovskites system.Comment: 5 pages, 4 figure
Unsupervised Diverse Colorization via Generative Adversarial Networks
Colorization of grayscale images has been a hot topic in computer vision.
Previous research mainly focuses on producing a colored image to match the
original one. However, since many colors share the same gray value, an input
grayscale image could be diversely colored while maintaining its reality. In
this paper, we design a novel solution for unsupervised diverse colorization.
Specifically, we leverage conditional generative adversarial networks to model
the distribution of real-world item colors, in which we develop a fully
convolutional generator with multi-layer noise to enhance diversity, with
multi-layer condition concatenation to maintain reality, and with stride 1 to
keep spatial information. With such a novel network architecture, the model
yields highly competitive performance on the open LSUN bedroom dataset. The
Turing test of 80 humans further indicates our generated color schemes are
highly convincible
Penetration depth study of LaOsSb: Multiband s-wave superconductivity
We measured the magnetic penetration depth in single crystals of
LaOsSb (=0.74 K) down to 85 mK using a tunnel diode
oscillator technique. The observed low-temperature exponential dependence
indicates a s-wave gap. Fitting the low temperature data to BCS s-wave
expression gives the zero temperature gap value which is significantly smaller than the BCS value of 1.76. In
addition, the normalized superfluid density shows an unusually long
suppression near , and are best fit by a two-band s-wave model.Comment: 5 pages, 2 figure
Probing the superconducting gap symmetry of PrRuSb: A comparison with PrOsSb
We report measurements of the magnetic penetration depth in single
crystals of PrRuSb down to 0.1 K. Both and superfluid
density exhibit an exponential behavior for 0.5, with
parameters (0)/\textit{k}\textit{T} = 1.9 and
= 2900 \AA. The value of (0) is consistent with the specific-heat jump
value of = 1.87 measured elsewhere, while the value of
is consistent with the measured value of the electronic
heat-capacity coefficient . Our data are consistent with
PrRuSb being a moderate-coupling, fully-gapped superconductor. We
suggest experiments to study how the nature of the superconducting state
evolves with increasing Ru substitution for Os
A high flux source of cold strontium atoms
We describe an experimental apparatus capable of achieving a high loading
rate of strontium atoms in a magneto-optical trap operating in a high vacuum
environment. A key innovation of this setup is a two dimensional
magneto-optical trap deflector located after a Zeeman slower. We find a loading
rate of 6x10^9/s whereas the lifetime of the magnetically trapped atoms in the
3P2 state is 54s.Comment: 12 pages, 16 figure
Recommended from our members
Effect of Stimulus Orientation on Visual Function in Children with Refractive Amblyopia.
Purpose: We investigated and characterized the patterns of meridional anisotropies in newly diagnosed refractive amblyopes using pattern onset–offset visual evoked potentials (POVEPs) and psychophysical grating acuity (GA).
Methods: Twenty-five refractive amblyopes were recruited and compared with non-amblyopic controls from our previous study. Monocular POVEPs were recorded in response to sinewave 4 cycles per degree (cpd) grating stimuli oriented along each individual participants' principal astigmatic meridians, which were approximately horizontal (meridian 1) and vertical (meridian 2). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed along the same meridians using a two-alternative non-forced-choice technique. The C3 amplitudes and peak latencies of the POVEPs and GAs were compared across meridians for both groups (refractive amblyopes and controls) using linear mixed models (monocular) and ANOVA (binocular), and post hoc analysis was conducted to determine if meridional anisotropies in this cohort of amblyopes were related to low (≤1.50 diopters [D]), moderate (1.75–2.75 D) and high (≥3.00 D) astigmatism.
Results: In the newly diagnosed refractive amblyopes, there were no significant meridional anisotropies across all outcome measures, but the post hoc analysis demonstrated that C3 amplitude was significantly higher in those with low (P = 0.02) and moderate (P = 0.004) astigmatism compared to those with high astigmatism. Refractive amblyopes had poorer GA and C3 amplitudes compared to controls by approximately two lines on the logMAR chart (monocular: P = 0.013; binocular: P = 0.014) and approximately 6 µV (monocular: P = 0.009; binocular: P = 0.027), respectively.
Conclusions: Deleterious effects of high astigmatism was evident in newly diagnosed refractive amblyopes, but the neural deficits do not seem to be orientation-specific for the stimulus parameters investigated
Recommended from our members
Electrophysiological and Psychophysical Studies of Meridional Anisotropies in Children With and Without Astigmatism.
Purpose: We investigated the pattern of meridional anisotropies, if any, for pattern onset-offset visual evoked potential (POVEPs) responses and psychophysical grating acuity (GA) in children with normal letter visual acuity (20/20 or better).
Methods: A total of 29 children (aged 3-9 years), nine of whom were astigmatic (AS), were recruited. Orientation-specific monocular POVEPs were recorded in response to sinewave grating stimuli oriented along the subjects' principal AS meridians. Horizontal and vertical gratings were designated Meridians 1 and 2, respectively, for nonastigmatic patients (Non-AS). Binocular POVEPs in response to the same stimuli, but oriented at 45°, 90°, 135°, and 180°, were recorded. Psychophysical GAs were assessed monocularly and binocularly along the same meridians using the same stimuli by a 2-alternative-forced-choice staircase technique. The C3 amplitudes and peak latencies of the POVEP and GAs were compared across meridians using linear mixed models (monocular) and ANOVA (binocular).
Results: There were significant meridional anisotropies in monocular C3 amplitudes regardless of astigmatism status (P = 0.001): Meridian 2 (mean ± SE Non-AS, 30.13 ± 2.07 μV; AS, 26.53 ± 2.98 μV) was significantly higher than Meridian 1 (Non-AS, 26.14 ± 1.87 μV; AS, 21.68 ± 2.73 μV; P = 0.019), but no meridional anisotropies were found for GA or C3 latency. Binocular C3 amplitude in response to horizontally oriented stimuli (180°, 29.71 ± 3.06 μV) was significantly lower than the oblique (45°, 36.62 ± 3 .05 μV; P = 0.03 and 135°, 35.95 ± 2.92 μV; P = 0.04) and vertical (90°, 37.82 ± 3.65 μV; P = 0.02) meridians, and binocular C3 latency was significantly shorter in response to vertical than oblique gratings (P ≤ 0.001).
Conclusions: Meridional anisotropy was observed in children with normal vision. The findings suggest that horizontal gratings result in a small, but significantly lower POVEP amplitude than for vertical and oblique gratings
A personal identification biometric system based on back-of-hand vein patterns
This report describes research on the use of back-of-hand vein patterns as a means of uniquely identifying people. In particular it describes a prototype biometric system developed by the Australian Institute of Security and Applied Technology (AISAT). This system comprises an infrared cold source, a monochrome CCD camera, a monochrome frame-grabber, a personal computer, and custom image acquisition, processing, registration, and matching software. The image processing algorithms are based on Mathematical Morphology. Registration is performed using rotation and translation with respect to the centroid of the two-dimensional domain of a hand. Vein patterns are stored as medial axis representations. Matching involves comparing a given medial axis pattern against a library of patterns using constrained sequential correlation. The matching is two-fold: a newly acquired signature is matched against a dilated library signature, and then the library signature is matched against the dilated acquired signature; this is necessary because of the positional noise exhibited by the back-of-hand veins. The results of a cross-matching experiment for a sample of 20 adults and more than 100 hand images is detailed. In addition preliminary estimates of the false acceptance rate (FAR) and false rejection rate (FRR) for the prototype system are given. Fuzzy relaxation on an association graph is discussed as an alternative to sequential correlation for the matching of vein signatures. An example is provided (including a C program) illustrating the matching process for a pair of signatures obtained from the same hand. The example demonstrates the ability of the fuzzy relaxation method to deal with segmentation errors
Continuum Superpartners
In an exact conformal theory there is no particle. The excitations have
continuum spectra and are called "unparticles" by Georgi. We consider
supersymmetric extensions of the Standard Model with approximate conformal
sectors. The conformal symmetry is softly broken in the infrared which
generates a gap. However, the spectrum can still have a continuum above the gap
if there is no confinement. Using the AdS/CFT correspondence this can be
achieved with a soft wall in the warped extra dimension. When supersymmetry is
broken the superpartners of the Standard Model particles may simply be a
continuum above gap. The collider signals can be quite different from the
standard supersymmetric scenarios and the experimental searches for the
continuum superpartners can be very challenging.Comment: 15 pages, 5 figures, talk at SCGT09 Workshop, Nagoya, Japan, 8-11
Dec, 200
Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOsSb
We have investigated the electrical resistivity of the heavy fermion
superconductor PrOsSb in the mixed state. We found unusual double
minima in the flux-flow resistivity as a function of magnetic field below the
upper critical field for the first time, indicating double peaks in the pinning
force density (). Estimated at the peak exhibits
apparent dependence on applied field direction; composed of two-fold and
four-fold symmetries mimicking the reported angular dependence of thermal
conductivity (). The result is discussed in correlation with the double
step superconducting (SC) transition in the specific heat and the multiple
SC-phases inferred from the angular dependence of .Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or
- …