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ABSTRACT 

This report describes research on the use of back-of-hand vein patterns as a means of uniquely 
identifying people. In particular it describes a prototype biometric system developed by the Australian 
Institute of Security and Applied Technology (AISAT). This system comprises an infrared cold source, a 
monochrome CCD camera, a monochrome frame-grabber, a personal computer, and custom image 
acquisition, processing, registration, and matching software. The image processing algorithms are based 
on Mathematical Morphology. Registration is performed using rotation and translation with respect to the 
centroid of the two-dimensional domain of a hand. Vein patterns are stored as medial axis 
representations. Matching involves comparing a given medial axis pattern against a library of patterns 
using constrained sequential correlation. The matching is two-fold: a newly acquired signature is 
matched against a dilated library signature, and then the library signature is matched against the dilated 
acquired signature; this is necessary because of the positional noise exhibited by the back-of-hand veins. 
The results of a cross-matching experiment for a sample of 20 adults and more than 100 hand images is 
detailed. In addition preliminary estimates of the false acceptance rate (FAR) and false rejection rate 
(FRR) for the prototype system are given. Fuzzy relaxation on an association graph is discussed as an 
alternative to sequential correlation for the matching of vein signatures. An example is provided 
(including a C program) illustrating the matching process for a pair of signatures obtained from the same 
hand. The example demonstrates the aBility of the fuzzy relaxation method to deal with segmentation 
errors. 

Keywords • Biometric, Infrared, Fuzzy relaxation, Mathematical Morphology, Medial axis, Pattern 
matching, Segmentation, Sequential correlation, Registration 
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1. INTRODUCTION 

Wherever security is required, be it to restrict access to buildings or to computer systems, it is 
necessary to employ an access control system. Traditional access control systems based on passwords, 
personal identification numbers (PINs), swipe-cards, keys, and so on, offer limited security. They are 
open to abuse because such systems identify a token or something known and not the actual person. In the 
case of a remotely accessed computer for instance, if its password is a dictionary word then security can 
be breached by trial and error; for example, a user can write a program that attempts to access the remote 
computer by exhaustively selecting words from an electronic dictionary. In the case of stolen or lost 
cash/credit cards, it is surprising "to learn that over a quarter of ... cards which are recovered through the 
system have their activating PIN written on them" (Parks, 1991, p. 181). 

The obvious solution to improving security is to identify the individual seeking access. Biometric 
access control systems do just this by measuring physiological or behavioural characteristics, i.e. 
biological traits, of the subject; hence the term biometric. Commercially available systems have exploited 
fingerprints, keyboard typing rhythm, retinal blood vessel patterns, speech, hand geometry, and the 
dynamics of signature writing. For example the Fingerscan system, developed in Australia, is an opto­
electronic finger scanning device that records "three-dimensional data from the finger such as skin 
undulations, ridges and valleys, reflections and other living characteristics" (Simpson, 1994, p. 8). Other 
possibilities for biometric access control include face recognition and gait. 

All biometric systems require each authorised user to be enrolled. This involves the user presenting 
the characterising trait to the system one or more times. A library template or signature is then formed 
from this sample. This template may be stored in a database or encoded on a smart-card. Subsequently, 
when the user wishes to gain access, the characteristic trait must be presented to the system which then 
compares this against a single template in the case of a smart-card, or a multitude of templates. The 
performance and applicability of biometric systems depends upon many factors including: 

(i) whether or not the client population is closed or open; e.g. a population of factory workers as 
opposed to the population of potential automatic teller machine users, 

(ii) the false acceptance rate (FAR) and false rejection rate (FRR), 
(iii) user reticence; e.g. objections to fingerprints because of their traditional association with 

criminality, 
(iv) whether or not the technique is invasive; e.g. retinal scans require the back of the eye to be 

scanned with a laser, 
( v) ease of use, 
(vi) hygiene, and 
(vii)cleanliness; e.g. a clean hand is needed for palm- and fingerprints. 

It is not surprising therefore that "a range of biometric systems is in development or in the market, because 
no one system meets all needs" (Miller, 1994, p. 22). One such system, first reported by MacGregor and 
Welford (1991), involves verifying user identity on the basis of the pattern of subcutaneous veins on the 
back of the hand. 

The pattern of veins on the back of the hand is particularly interesting because, although the 
veins are constrained to run between the bones of the knuckles to connect to the fingers, and are 
constrained where they run over the wrist bones, in between they seem to conform to no 
particular pattern. Nevertheless the vein pattern seems to be stable over a period of years. 
(Hawkes & Clayden, 1993, p. 1). 

This technique shows promise as a passive, non-invasive means of personal identification. It must be 
stressed though that the viability of this concept has yet to be established. Hypothesis testing (statistical 
inference) is needed to determine the validity of the premise that a person's hand vein pattern is unique. 
To this· end it is necessary to build a research biometric system capable of acquiring, automatically 
processing, and matching vein pattern images; and for which the FAR and FRR can be established. 
Cambridge Consultants Ltd., in collaboration with the British Technology Group (BTG), have been 
researching the hand vein pattern concept (which they have called Veincheck) with the aim of developing 
a commercial system. To date the group appears not to have had too much success - "the performance to 
be expected from a commercial version of such a system can only be conjectured at this stage" is a quote 
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from a seminar paper presented by BTG in September, 1993 (Hawkes & Clayden, 1993). This position is 
further supported by the fact that the group contacted AISAT in 1994 expressing an interest in our 
research. 

In a previous research report (Mehnert, Cross, & Smith, 1993) we detailed a low cost infrared (IR) 
imaging system and semi-automatic segmentation algorithm for the extraction of a vein signature from a 
digital infrared image of the back of a person's hand. Since then the AISAT research team have refined 
the imaging system and segmentation algorithms (now completely automatic) and have additionally 
implemented and are in the process of evaluating a custom matching algorithm. This report summarises 
these advancements and offers preliminary matching results and estimates of the FAR and FRR. 

2. NEAR INFRARED IMAGING 

The infrared spectrum is the range of wavelengths from approximately 700 nm to 14000 nm. The 
near-red part of the spectrum from 700 to 1350 nm is called the actinic range. Radiation in this range 
"can be reflected, transmitted, or emitted through luminescence* , by objects that are not hot themselves" 
(Newman, 1976, p. 67); incandescent objects such as tungsten filament light bulbs and the sun produce 
radiation in this range. Beyond the actinic range up to about 5000 nm is the middle infrared radiation 
characteristic of hot (non-incandescent) objects ranging from heated flatirons (around 400 °C) to a metal 
saucepan of boiling water (less than 200 oq, The far end of the spectrum, beyond 5000 nm, represents 
radiation produced by warm objects such as the human body and sun-warmed ground. 

Infrared radiation is invisible to the naked eye. However, for the actinic range (non-hot), film 
emulsions have been devised that enable this radiation to be photographed. Clinical applications of 
infrared photography have included the study of skin lesions and blood circulatory patterns. It is the latter 
application that is of relevance to the development of a back-of-hand vein pattern biometric system. The 
extent to which the vein structure can be seen on the back of a hand, in visible light, varies from person to 
person. It is influenced by several factors including: the presence of freckles, moles, scars, and hair; 
ambient temperature; and recent physical exertion. From a photographic standpoint, actinic IR can 
penetrate human skin tissue to a depth of about 3 mm. In black-and-white such photographs render the 
subcutaneous vein system visible as a dark grey network against a light grey background. The reduced 
haemoglobin in venous blood absorbs more infrared than the surrounding skin tissue thus providing 
contrast. Importantly, "instrument readings and photography show that the skin of all races reflects actinic 
infrared to about the same degree" (Newman, 1976, p. 112). The keratin in hair absorbs most of the 
incident infrared radiation and thus appears very dark in a black-and-white infrared photograph. "When 
sparse dark hair lies very close to the body infrared does reflect off the skin to become partially 
transmitted through the hair" (Newman, 1976, p. 113). Our experiments show this to be the case for back­
of-hand infrared images. Whilst infrared images of the back of the hand show a marked improvement in 
contrast between skin tissue and veins as compared to what can be seen with the naked eye, the quality 
and extent of the revealed vein structure is highly variable. Newman (1976, p. 117) has stated that 

although it is generally agreed that the veins are more noticeable in the infrared photograph 
than they are visually, the pictures must not be expected always to show a striking network of 
veins. Indeed, it is a mistake to be disappointed when the pattern is not boldly delineated. Its 
distinctness depends on the thickness of the overlaying skin, on the degree of venous 
engorgement, on the condition of the vein walls and on the nearness of the veins to the surface. 

Clearly conventional photography is not suitable for use in a biometric system. Rather, a video 
camera, frame-grabber, and computer are needed to image, store, and process back-of-hand infrared 
images. Conventional charge-coupled device (CCD) cameras, though principally designed for use in 
visible light, are sensitive to near infrared wavelengths up to about 1100 nm. The three most common 
types of CCD sensors used in these cameras are: C-MOS, INTERLINE TRANSFER, and FRAME 
TRANSFER. Of these, the INTERLINE TRANSFER "chip is known for its high sensitivity to IR 
lighting" (Pierce, 1993, p. 2.14). Indeed for the two cameras compared in our previous report (Mehnert, 

* Visible-light-excited infrared fluorescence 
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et al., 1993), it was the camera with the INTERLINE TRANSFER chip that had the greatest sensitivity to 
IR. Figure 1 is a sketch of a typical response curve for a silicon-based sensor (CCD chip) . 

... 

.., 
·~-+--~~~--~~--.--+~~~ 

~ * * ~ ~ ~ ~ ~ - ~ -
Wavelength (run) 

Figure 1. Response curve for a typical silicon­
based CCD sensor (reproduced from Lake, 
1994, p. 36). 

3. THE IMAGE ACQUISITION SYSTEM REVISITED 

In contrast to the BTG system, the AISAT system uses a commercial off-the-shelf, near infrared cold 
source1, rather than a tungsten filament light source, to provide back-of-hand illumination. The IR cold 
source is a solid-state array of LEDs (light emitting diodes). A commercially available, low cost, 
monochrome CCD camera2 fitted with an infrared filter3 is used to image the backs of hands. Our 
experiments showed that the cold source, which emits IR at a wavelength of 880 nm ± 25 nm, provides 
better contrast than ordinary tungsten filament bulbs. Figure 2 shows respectively: the emission curve for 
a tungsten filament light source and the emission curve for a typical LED, superimposed on the response 
curve for a typical CCD sensor (Figure 1). Clearly the system is exploiting only a very small window of 
the near IR spectrum. The window is not quite the one imposed by the IR cold source because the 
infrared filter, designed to transmit wavelengths greater than 900 nm, is not ideal. The transmission curve 
for the filter (Hoya RM90) was obtained using a spectrophotometer. The curve reveals that the filter has a 
small tail of transmittance down to about 750 nm (see Figure 3). TheIR filter ensures that no visible light 
reaches the CCD sensor. The choice of off-the-shelf IR filters is rather limited. Kodak-Wratten produce 
five types of gelatine IR filters: 87, 87B, 87C, 88A, and 89B. All but the 87B transmit wavelengths in the 
700 nm to 800 nm range. Hoya produces two glass IR filters: R72 and RM90. The former attenuates 
wavelengths less than 720 nm and the latter wavelengths less than 900 nm. Given the operating 
wavelength of the IR source, and the availability of filters from Australian suppliers, the Hoya RM90 wa~ 
chosen. 

Although the current imaging system retains the camera/IR-source/filter combination used m the 
original AISAT system (Mehnert et al., 1993, p. 5), it differs in four important respects: 

(i) the convex mirror assembly used to concentrate the wide-angle IR beam onto the back of a ham! 
has been removed and replaced by diffusing paper over the IR source, 

(ii) the imaging unit is now enclosed so that no ambient IR radiation or external IR sources can reach 
the CCD sensor, 

(iii) the subject no longer presents ,the back of the hand to the camera by gripping a foam mould, 
rather the hand is presented as a clenched fist with the thumb covered by a piece of black card, 
and 

I Model TC8245IRW, Burle Industries Incorporated, Security Products Division, Lancaster, PA, USA 
2 Model OS-458, Mintron Enterprise Company Limited, Taiwan 
3 Model RM90, Hoya Corporation, Japan 
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(iv) images are captured at a higher spatial and radiometric resolution; now 640H x 480V pixels and 
a grey-scale resolution of 8-bits per pixel (i.e. 256 shades of grey), as opposed to 320H x 400V 
pixels and a grey-scale resolution of7-bits per pixel (i.e. 128 shades of grey). 

Figure 4 is a sketch of the imaging unit. A simple U-shaped docking frame is used to constrain the 
subject's hand. The docking frame and the base of the unit are painted with poster black, flat acrylic, 
scenic paint4 to minimise reflection of IR radiation from their surfaces. A simple dimmer switch is used to 
attenuate the intensity of the IR source; this is necessary because the source is actually an indoor IR 
security light and produces an intense, wide-angle beam. A monochrome frame-grabberS is used to 
capture a video image of the back of a hand (see Figure 5) for computer processing. The sides and back 
of the imaging unit are completely closed. A cloth is draped over the top and front of the unit; this 
provides easy access to the camera/IR-source assembly, and allows a subject to easily position his/her 
hand in the docking frame . 

... 
OA 

~ 0.7 

~OA 
i>:u 

~ OA 

~0.3 
..: 0~ 

0.1 

,' 

,' 
i 

,' 
,' 

o.1 

0~~~~~~--~-+--~~~~~ 
200 - 400 100 100 700 100 100 1 000 tt 00 1200 

Wavelength (run) Wavelength (run) 

(a) (b) 

Figure 2. Response and emission curves (adapted from Lake, 1994, pp. 36-37) 
(a) Emission curve for a tungsten filament light source. 
(b) Emission curve for a typical LED. 

Transmittance 
100% 

0 ~---===~-.-----------, 
700 800 

Wavelength (nm) 

900 

Figure 3. Transmission curve for the RM90 
infrared filter. 

4 Solver Paints, South Australia 
5 Model DT2855 QuiekCapture, Data Translation Incorporated, Marlboro, MA, USA 
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CCDcamera 
/ 

infrared filter -
- infrared LED array 

diffusing paper ---

1 f I I I 

- - hand docking frame 

/ 
clenched fist inserted here 

Figure 4. Schematic of the imaging unit. 

Figure 5. Frame-grabbed image of a male hand, 640H x 480V pixels, 
256 shades of grey. 

4. SEGMENTATION AND CODING OF VEIN PATTERNS 

6 

In the original work of MacGregor and Welford (1991, 1992) vein patterns, traced onto acetate sheets 
directly from a monitor screen, were mapped onto a coarse hexagonal grid and reduced to a simplified 
representation for matching purposes. "The adequacy of this representation is questionable" (Mehnert, et 
al., 1993, p. 5). Indeed the BTG res~archers have since proposed representing each vein "by a vector 
which has position and angle and can be regarded as a short straight line approximating a length of vein 
centreline" (Hawkes & Clayden, 1993, p. 1). We still submit that the digital skeleton (or medial axis) of 
the vein structure is a more faithful and robust representation than either of those proposed by the BTG. 

Most recently the BTG researchers have used a local contrast enhancement function and thresholding 
to produce binary images (see Figure 6) of vein patterns from digital images of the backs of hands. They 
have claimed that "binary images processed in this way are sufficiently consistent that it is feasible to 

Australian Institute of Security and Applied Technology, Edith Cowan University 
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employ a two dimensional geometric matching method to decide if a presented image is of an imposter" 
(Hawkes & Clayden, 1993, p. 1). 

Figure 6. An example of a binary image of a left 
hand obtained by the BTG researchers 
(reproduced from Hawkes & Clayden, 1993). 

We have devised an automatic segmentation and coding algorithm that effectively reduces a frame­
grabbed image of the back of a hand to a medial axis representation. The medial axis is not only a faithful 
representation of the vein pattern but also an economical means of encoding it. It is the medial axis that is 
used in matching (after registration). The algorithm was developed using DIMPAL (Mehnert, 1994a)- a 
digital image processing and analysis language. The algorithm supersedes our original segmentation 
algorithm (Mehnert et al., 1993) which was prone to segmentation error when dealing with hairy hands; 
this is because the alternating sequential filter (ASF) used in the algorithm to attenuate noise6 had the 
propensity to merge clumps of hair. The new algorithm has an improved sensitivity to vein pattern 
structure and a much reduced sensitivity to noise - particularly hair. It is still based on Mathematical 
Morphology and retains many of the elements of its predecessor including: tophat transformation, open­
closing, alternating sequential filtering, and gradient-based thresholding. Definitions of the binary and 
grey-scale morphological operators used, and the morphological gradient are given in Appendix A. A 
description of the algorithm follows: 

Structuring elements (SEs) 

• 
Define B1 = {(0,0),(0,1),(1,0),(0,-1),(-1,0)}, i.e. B1 = • • •, where i denotes the origin, 

i 
• 

• • • 
• • • • • • • • 

• • • • • • • • 
• • • 

• • • 
• • • 

, and L4 = • i • 
i 

• i 
• • • 

• • • 

6 it was incorrectly state'd that the filter removed thresholding artefacts 
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sl =Bl, 

S2 =Sl E9B2 

=C, 

• • • 
• • • • • 

• • • • • • • 
• • • • • 

i 
• • • • • • • 

• • • • • 
••• 

• • • • • 
•• • • • • • • 

• • • • • • • • • 
• • • • • • • • • 

• • • • • • • • 
i 

• • • • • • • • • 
• • • • • • • • • 

• • • • • • • 
• • • • • 

1. Attenuate impulse noise and enhance contrast- Figure 7(a) 

8 

Apply a 3 x 3 moving average to the frame-grabbed image to attenuate impulse noise. Call this 

smoothed image f. Next apply the anamorphosis f(x,y) ~ [f(x,y)]2
, to increase contrast, and 

linearly interpolate the result so that its range is the interval [0,255]. Call this new image f'. 

2. Determine the domain of the hand- Figure 7(b) 
The maximum value, t e [0,255], of the morphological gradient of f' is the threshold value that 
separates the foreground (hand) from the background: 

t = +[max(.B(f',B1)-G(j',B1))]. 
(x,y) 

and the domain of the hand is the threshold set D = {(x,y)lf'(x,y);:=:t}. The maximum value of 

the gradient necessarily occurs at the edges of the hand and is close to zero outside of the domain 
of the hand. 

3. Reduce the domain to obtain the working domain- Figure 7(c) 
First an open-closing (opening followed by a closing) is performed to eliminate any thresholding 
artefacts and to fill in any holes in the domain: 

D' = C(&(D,C),C). 

Next, this domain is eroded to leave a subset of the interior of the hand, the working domain W: 

W = G(D',nC), where nC = CE9CE9·· ·E9C 
'---.r------' 

(n-1) times 

We use a value of n = 13 whicll approximates the erosion of the domain by a disk of radius 27 
pixels. Alternatively, a distance map of D' could be generated and then thresholded (see Mehnert 
et al., 1993). 

4. Remove hair, skin pores and other noise- Figure 7(d), Figure 8 
Hair is essentially linear noise. Now grey-scale opening "can be visualised as the sliding of the 
SE along the underside of the brightness surface of the image. Wherever the SE is unable to 
penetrate, the surface is smoothed over" (Mehnert, 1994b, p. 70). The closing acts in the same 
manner but on the top of the brightness surface. Consequently for 4 independent closings using 
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theSEs {L1 ,L2 ,L3,L4 } a given strand of hair will admit at most one of the structuring elements­

i.e. it will be attenuated by at least 3 of the closing operations. However only veins and areas of 
uniform brightness will admit all four structuring elements. Thus a maximum (analogous to an 
intersection) of independent closings is used to attenuate hair: 

f" = ~~{C(J',L;)}, 
1=1 

In a similar fashion a minimum (analogous to an intersection) of independent openings, 

f"' = ~tn{&(f",L;)}, 
I= I 

attenuates any positive thin linear structures, e.g. ridges between skin pores, and small artefacts 
induced by specular reflection. (Note: operations are restricted to the working domain, W). 

5. Normalise the background- Figure 7(e),(f) 
The back of a hand is a curved surface and hence the IR illumination across it is not uniform. To 
correct for this the brightness surface must be estimated and then subtracted out - background 
normalisation. This is achieved by closing f"' by an octagon sufficiently large so that it will not 
fit into any vein structure. Only the background remains. By subtracting f"' from this closing 
(on the working domain, W), called top hat transformation, only the vein structure is retained 
(once again we use n = 13): 

g = C(f"',nC) - f"'. 

6. Threshold out the vein pattern- Figure 7(g) 
Once again, the morphological gradient is used to obtain a threshold value; this time a value s that 
separates the vein pattern from the background: 

and the vein pattern is the threshold set V = {(x, y)j g(x,y);;::: s }. 

7. Remove artefacts, fill holes- Figure 7(h) 
A binary alternating sequential filter, employing structuring elements approximating disks of 
increasing size, is used to remove any threshold artefacts, and to fill small holes in the vein 
structure: 

8. Thin the pattern down to its medial axis - Figure 9 
The binary vein pattern is thinned to its medial axis representation. The. thinning algorithm used 
is a modification of the well known Zhang and Suen ( 1984) algorithm. The modification, devised 
by Sossa (1989), is a single post-thinning pass through the image that removes redundant pixels to 
ensure that the medial axis has single pixel thickness. 

9. Prune the medial axis - Figure 10, Figure 11 
The thinned image is scanned and all skeletal endpoints identified. From a given endpoint the 
thinned image is tracked until either another endpoint is reached - in which case a length of vein 
has been tracked - or an intersection point is reached - in which case a branch was tracked. 
Branches of length less than ~ = 40 pixels, and veins of length less than ex = 60 pixels arc 
removed. This is done for each endpoint independently and the whole process is repeated until 
convergence (when no more pruning can be done). Spurious segments induced by shadows and 
large clumps of hair are eliminated whilst the dominant veins are retained. 

Australian Institute of Security and Applied Technology, Edith Cowan University 
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··.:.>-:"' 

(a) 

(e) (f) 

(g) (h) 

Figure 7. Segmentation of the vein pattern. 
(a) Figure 5 after mean filtering and contrast enhancement; 
(b) Domain obtained from the gradient-based thresholding of (a); 
(c) Open-closing of (b) by a small octagon, followed by an erosion by a large octagon (yielding the 

working domain); 
(d) Filtering of (a), on the working domain, to remove hair and other noise; 
(e) Closing of (d) by an octagon larger than the width of the largest vein - estimate of the background 

brightness surface; 
(f) Tophat transform: (e) subtract (d)- background normalisation; 
(g) Vein pattern, after registration, obtained from the gradient-based thresholding of (f) 
(h) ASF applied to (g). 

Australian Institute of Security and Applied Technology, Edith Cowan University 
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At present the vein pattern signature images are coded using the following run-length encoding 
scheme: 

The most significant bit of each byte in a run-length encoded signature image records a pixel value of 
either 1 (part of medial axis) or 0 . The remaining 7 bits represent a repetition count in the interval 
[1,128]. The process of decoding a run-length encoded signature image thus involves reading the code 
byte and duplicating the value indicated by the most significant bit the number of times dictated by the 
remaining bits. This simple compression strategy reduces a 300 Kb frame buffer (640H x 480V x 8 
bits) to on average 3.5Kb for a signature image("" 1.2% of original size). 

(c) 

Figure 8. Performance of the custom noise filter of step 4 of the segmentation algorithm. 
(a) Figure 7(a) rendered as a 3D surface; 
(b) Figure 7(d) rendered as a 3D surface; 
(c) Histogram equalisati9n of the difference between Figure 7(a) and Figure 7(d) showing the noise 
removed by the custom filter. 
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/ 

I 

( I 

Figure 9. Medial axis representation of Figure 7(h). 

Figure 10. Figure 9 after pruning. 
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Figure 11. Figure 10 superimposed on the original image (histogram 
equalised and registered) depicted in Figure 5. 

5. VEIN SIGNATURE REGISTRATION 

13 

To match a vein signature against one or more library signatures initial registration is necessary to 
correct for slight variations in a subject's placement of their hand at the time of capture. MacGregor and 
Welford (1991,1992) used the outline of the hand, in particular that of the knuckles and the side of the 
hand opposite the thumb, to facilitate manual registration. Our research has shown that this approach is 
not suitable for automatic registration, particularly when employing the U-shaped docking frame, because 

(i) shadows can obscure the outline of the hand, 
(ii) of the variability associated with hand placement (when no docking frame is used), and 
(iii) the outline of the hand can be distorted by the deformation of the side of the hand pressed against 

the docking frame. 

Registration 
Our original approach to rotation correction involved calculating the orientation of the principal axes 

of area about the centroid (called principal centroidal axes) for the working domain, obtained in step 3 of 
the segmentation algorithm, viz: 

where Ix = J idA, 1Y = J x 2dA, Pxy = J xydA are the moments and product of inertia, about the centroid, 

of the area A; i.e. the working domain W. However for a sequence of images obtained by repositioning 
the hand in the docking frame, the vein signatures, in some instances, exhibited enough rotational error to 
render simple correlation matching of two signatures us~less. Our current approach to registration is to 
first obtain a reference axis (position vector) defined by the centroid of the working domain of the hand 
and the midpoint of the last row (at the wrist) of this domain. The centroid defines the origin of the 
position vector, and together with the midpoint of the last row, defines its direction. Registration involves 
translating this position vector to the centre of the image buffer (640H x 480V pixels), i.e. coordinates 
(320, 240), and then rotating it so that it is perpendicular to the horizontal. Registration takes place 
immediately after step 6 of the segmentation algorithm. Our research has shown that this registration 
process is robust in correcting for rotation and vertical translation. However vein signatures still exhibit 
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some horizontal positional noise (see Figure 12). This is probably due to deformation of the side of the 
hand pressed against the docking frame, and to variation in the positioning of the card used to mask the 
thumb. Fortunately this variation can be accounted for in the matching strategy. 

It is interesting to note that the BTG have proposed a similar registration scheme, though one which is 
considerably more computationally expensive than ours. They have suggested that "automatic alignment 
can be achieved by scanning the image [see Figure 6] with a coarse scan and analysing samples of the 
veins" (Hawkes & Clayden, 1993, p. 1). This analysis involves: approximating lengths of vein by vectors, 
choosing the approximately vertical ones to assist with horizontal alignment, the approximately horizontal 
ones for vertical alignment, and using the others to assist in determining a rotation correction. 

--- vertical noise 

horizontal noise 

Figure 12. An overlay of 5 signatures, after registration, 
obtained from 5 repositionings of the same hand in the docking 
frame. Significant horizontal positional noise is still evident after 
registration (vertical positional nmse is comparatively 
negligible). 

6. VEIN PATTERN MATCHING 

A back-of-hand vein pattern biometric system must be able to positively identify a person by matching 
a newly acquired vein signature against a reference signature (library template) stored in a database or 
encoded on a smart-card. A simple pixel by pixel comparison of two signatures is not viable for two main 
reasons: 

(i) subcutaneous blood vessels have some freedom to move because they are surrounded by soft tissue 
and their position is thus influenced by factors such as the degree of flexing of the hand, and 

(ii) they exhibit varying degrees of dilation depending on the person's physiological state which is 
influenced by - amongst other factors - physical activity and the ambient temperature. 

6. 1. Grid based matching 
MacGregor and Welford (1991,1992) mapped vein pattern networks, by hand, onto a course 

hexagonal grid (see Figure 13). "The grid resolution was selected to provide an adequate representation 
of the vein-tree, but at the same time its size matches the inherent noise associated with the positional 
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information of the vein structure" (1992, p. 54). A hexagonal grid was chosen in preference to a square 
grid because it supports higher connectivity and matches the topology of the vein structure reasonably 
well. The representation permitted the construction of a connectivity matrix for each vein pattern 
describing the connectivity of the grid of hexagons. Each element of the matrix is a n-tuple comprising 
the coordinates of a hexagon within the grid and the connections between the hexagon and each of its six 
neighbours (indicated by a I or 0). The ratio of the number of common connections to the total number of 
vein connections for all hexagons then provides a measure of the similarity between two connectivity 
matrices. MacGregor and Welford (1992) obtained the similarity values between the vein patterns from 
20 different hands. All similarity measures for different hands were less than 0.45. They also performed a 
blind test in which 5 independently acquired vein patterns were compared against the library of 20. Two 
of these test patterns were obtained from individuals whose signatures were already in the library. 
Although there were no mismatches, in one case, the similarity value for two different images of the 
same hand yielded an unacceptably low 0.228. This result is not surprising; we have observed that the 
mapping procedure can produce markedly different representations of the vein structure depending on the 
exact placement of the hexagonal grid over the hand image. 

Figure 13. Mapping the vein pattern onto a coarse hexagonal grid. (In this 
case the image is the histogram equalisation of Figure 5). 

6.2. Matching of vein signatures using constrained sequential correlation 
Our approach to matching is to compare medial axis representations obtained from the segmentation 

and coding algorithm (after registration) using what we have termed constrained sequential correlation. 
The method is a variation on the traditional correlation methods used for template matching. The 
reference or library signature is first dilated by an octagonal structuring element, nC (approximating a 
disk). The size of this structuring element (n = 4) was chosen based on observations of the inherent 
positional noise exhibited by a length of medial axis from several signatures of the same hand. The test 
signature is then superimposed on this reference buffer and the percentage of pixels contained within the 
buffer determined. To account for the hqrizontal translation error still evident after registration the test 
signature is sequentially translated horizontally and compared against the reference buffer. The horizontal 
translations are constrained to ±30 pixels. The highest match percentage in this interval is deemed to be 
the measure of forward similarity between the test and library signature. As the proportion of vein pixels 
in'the test signature can be small relative to the library signature the preceding process is reversed; i.e. the 
test signature is dilated and the reference signature is sequentially correlated with it until the maximum 
measure of reverse similarity is obtained. For the test signature to match the library signature both the 
forward and reverse percentages must be high. As an experiment we captured 5 infrared back-of-hand 

· images from each of .20 adults. Each individual was required to reposition his/her hand in the docking 
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frame between captures. This group comprised 3 females and 17 males. It included the following racial 
groups: Caucasian, Indian, and Oriental. In addition, for two of the individuals, another set of 5 
observations were included; these had been captured several weeks earlier. All of the images were 
processed and registered. For each set of 5 signatures a library template was constructed from the last 3 
signatures (chronologically speaking). Construction of this template involved: 

Construction of the library template 
(i) dilating, thinning, and pruning the third signature and storing the result in the library template 

memory; 
(ii) horizontally translating the fourth signature so as to achieve the highest correlation with the 

library template, taking the union of the translated signature and the library signature, dilating, 
thinning, and pruning the result and storing this in the library template memory (overwriting the 
previous result); and 

(iii) translating the fifth signature so as to achieve the highest correlation with the library template, 
taking the union of the translated signature and library signature, dilating, thinning, and pruning 
the result and storing this in the library template memory (overwriting the previous result) - see 
Figures 14 and 15. 

Figure 14. The last three signatures obtained from the individual whose first signature is depicted in 
Figure 10. 
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Figure 15. Library template constructed from the 3 signatures shown in Figure 14. 

The construction process can of course accommodate any number of training signatures. Figure I6 
demonstrates the matching process for the signature shown in Figure 10 and the library template shown in 
Figure 15. Table 1 shows the results of cross-matching the first signature (not used in the construction of 
a library template), from each set of 5, with each of the library templates. Similarly Table 2 shows the 
results of cross-matching the second signature (also not used in the construction of a library template), 
from each set of 5, with each of the library templates. By the very nature of its construction a library 
template contains more information than any single signature. Hence the minimum acceptable percentage 
for a forward match should be higher than that for a reverse match. Setting the minimum forward and 
reverse percentages to 75% and 60% respectively for positive identification, all but signatures 3 and 17 
are identified in Table 1, and all but signature 4 are identified in Table 2. This constitutes a FRR of 7.5% 
(based on 20 individuals). Moreover because there are no mismatches the FAR is 0%. Lowering the 
minimum forward percentage to 70% reduces the FRR to 5% without affecting the FAR. Signature 17 of 
Table 1 is an unusual case. The signature has a 66% forward match with its own library template and a 
70% forward match with library template 21 (see Figure 17). Clearly the reason for the poor match with 
its own library template is that the signature and its template are not correctly vertically registered. Figure 
18 shows the first captured image of individual 21's hand, and the 5 images captured of individual 17's 
hand. Unfortunately the docking frame is about 1 em too low and this allows individuals with large hands 
the freedom to rotate the knuckles over the front of the docking frame. This is exactly the case for 
individual 17; one can clearly see in the first image that the knuckles are very close to the top of the 
picture compared to the other 4 images. To make matters worse in the fourth image the hand is not firmly 
pressed against the top of the docking frame; and as a result the library template, because it is constructed 
from the last 3 images, retains some vertical translation error. Consequently the first signature of 
individual 17 fails to match against library template 17 even though the person's second signature does. 
What is remarkable though is that the first signature of individual 17 achieves a 70% forward match with 
individual 21's library template. This level of match is attained for a horizontal translation of 29 pixels. 
When the sequential correlation matching algorithm is constrained to ±20 pixels the degree of forward 
match is reduced to 60%, and for ±15 pixels it is only 50%. Clearly the inherent horizontal registration 
problem of the current imaging system needs to be addressed. 

Templates 7 and 8 are actually from the same individual. They were obtained from two sets of 5 
images captured several weeks apart (and under slightly different lighting conditions). Similarly templates 
13 and 14 belong to another single individual. Test signatures 7 and 8 of Table I and 7 and 8 of Table 2 
match both template 7 and template 8. Test signature 14 of Table I and I4 of Table 2 match both 
template 13 and template 14. However test signature 13 of Table I and I3 of Table 2 only match template 
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13. Their respective reverse match percentages with template 14 are both very high: 80% and 83%. This 
indicates that the set of signatures used to construct template 14 contain less detail than those used to 
construct template 13. Clearly a library template needs to be constructed from a series of images captured 
under optimal conditions. For instance an individual being enrolled in the system might be required to 
repeatedly squeeze, say, a rubber ball just prior to image capture so that the blood vessels are dilated and 
thus well defined. 

83% forward match 

75% reverse match 

Figure 16. Forward and reverse matches for signature 5 of 
Table I (shown in Figure 10) against library template 5 
(shown in Figure 15). 
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Table 1. Forward/reverse template match percentages for the first signature obtained from 20 people. 

Library Template 

Signature I I 4 5 6 7 8 • 10 II II " " IS 16 17 18 19 10 II ll 

91 37 37 27 " 41 45 " " " 39 49 ,. .. " 40 42 61 " 67 .... 37 

78 26 22 28 26 28 " 26 40 28 " " 30 " " 18 29 28 26 27 26 " 
29 78 " JJ " JJ J8 41 28 37 4J J4 49 41 44 48 Jl " 29 48 Jl J6 

" 91 37 60 J6 39 4J J6 41 J8 " " 47 49 J8 J7 J8 41 29 36 37 44 

29 4J 7J 19 40 26 21 28 46 29 JO " 49 " Jl " 41 46 " 41 J4 J4 

41 60 78 JJ J4 JJ 30 30 64 Jl J4 51 41 " 29 27 47 41 28 " 40 41 

41 44 46 91 J8 40 39 J8 JJ " 26 JJ 50 J7 56 44 47 51 4J 47 30 49 

JJ 30 25 " 16 22 24 19 22 21 17 J4 21 21 29 19 27 21 22 18 18 29 

28 30 JJ 24 " 2J 31 21 30 " 24 22 " JJ JJ J6 28 39 " 48 25 44 

48 40 41 " 75 JJ 42 30 42 45 " " J6 39 JJ J4 39 JJ " 39 31 58 

28 J8 " 25 46 " " 25 46 J2 " 30 54 47 41 46 " J7 40 6J J6 J6 

" 4J 39 41 Jl ., 4J 21 " 29 30 40 41 40 " Jl " 27 Jl 39 JJ J6 

" 26 JJ 17 " 40 82 89 24 28 2J 22 4J 47 40 29 21 47 47 56 47 30 

,. J2 J2 30 26 4J .. 76 25 2J 2J 30 J4 " J4 22 24 JJ " " .. JJ 

... 27 J3 14 Jl 28 79 .. 2J 29 J4 Jl 41 48 4J 41 JJ 4J " 41 ... 25 

" 28 30 19 20 2J 78 " 21 2J 30 45 30 " J3 27 30 25 J6 25 " 22 

4J 27 4J Jl JJ 4J 30 29 77 39 41 29 50 41 4J 41 J2 47 54 ,.. 
" J6 

57 Jl 37 47 24 46 35 26 89 J3 " 4J 39 J4 J7 Jl 34 J2 46 J3 " 35 

10 28 J4 Jl 29 39 JJ 28 28 " "' 24 " 46 " so " 26 46 45 so 41 47 

J8 41 27 " 28 JJ Jl 2J 40 " 2J 50 35 " J7 39 27 Jl 35 Jl " 42 

II 26 ... 28 16 41 20 26 JJ 39 Jl 89 28 49 4J 4J 35 J7 47 39 57 J4 J4 

J9 " 28 27 32 21 28 29 50 J4 .. 45 41 45 42 30 42 " 39 41 J7 39 

12 61 41 42 30 45 J7 30 " ... " J6 100 60 58 60 ... 41 " 46 ... 39 ,.. 

" 32 27 30 21 24 21 29 " 18 22 96 30 J7 32 23 Jl 26 26 28 26 J8 

13 22 29 Jl 23 41 39 30 28 39 J4 J7 Jl 93 ... 4J J8 Jl 4J 4J .... 32 J8 

41 4J 37 48 J8 " 41 Jl 61 41 48 65 " 80 47 37 45 40 48 40 43 ,.. 
14 26 41 28 30 " 45 J8 37 " J8 44 ... 100 91 46 J8 26 41 49 50 J8 48 

Jl 45 27 41 J4 " J8 29 50 34 39 60 73 " J6 28 27 27 37 29 38 49 

IS 29 J4 J6 18 Jl 48 30 34 28 45 29 J8 44 " " 41 J3 4J .. " 29 37 

40 ... " J2 23 " " 30 39 41 28 58 J6 J2 " Jl 39 32 41 41 30 4J 

16 21 34 27 19 JJ 28 24 J3 30 40 29 25 37 Jl Jl .. 2J 40 25 4J 26 28 

36 " J4 " J2 37 J3 34 46 50 36 44 40 39 J3 87 Jl 36 30 " 35 36 

17 26 35 40 25 " 41 J2 27 39 20 42 29 42 41 J4 Jl .. J6 " 5I 70 30 

28 35 36 39 " 39 J3 21 4J 18 " 42 J3 J8 27 20 62 23 35 28 " 28 

18 26 29 27 18 J6 21 " J3 Jl J6 " 24 39 39 " J2 30 " " 40 24 J3 

48 50 J6 40 " " 41 39 ,.. 45 46 48 41 41 50 JJ 42 82 4J 36 :u 41 

19 30 24 30 28 39 Jl 41 40 32 " 37 30 " " 42 JO 35 38 .. 52 43 31 

52 41 43 59 37 42 56 44 ,.. 67 52 67 " 61 47 30 48 37 ., 47 " 45 

26 41 24 18 38 43 29 38 27 28 45 21 39 37 5I 41 2S 42 2S 98 29 31 

4J ,.. 27 35 31 " JJ 35 J8 29 47 39 " 42 50 36 34 34 24 73 3J 41 

II 31 39 32 18 38 32 43 41 42 " 34 30 47 56 35 43 32 42 50 60 89 30 

50 52 3J 3J 3J 37 57 43 " 52 35 " 44 57 3J 37 35 34 " 46 100 37 

ll 23 " 32 30 46 35 26 28 J8 41 34 35 46 38 « 47 34 5I 37 47 28 89 

3J " 35 " 35 43 29 28 52 41 3S 5I 38 36 42 40 39 40 3J 33 31 100 

" 

Notes. 
(i) Signatures/templates 7 and 8 are from one individual, and signatures/templates 13 and 14 belong to 

another single individual (data were collected several weeks apart). 
(ii) Upper cell entry indicates the forward match percentage and the lower cell entry indicates the reverse 

match percentage. 
(iii) A shaded cell indicates a forward match of 75% or greater and a reverse match of 60% or greater. 
(iv) Boldly outlined cells a.re unusual observations. 
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Table 2. Forward/reverse template match percentages for the second signature obtained from 20 people. 

Library Template 

Signature 2 5 11 12 IS 16 17 18 19 20 21 

30 47 6S S3 3S S3 " 73 S6 3S 6S " 
19 37 16 28 30 23 39 26 18 22 32 23 22 20 26 22 22 19 

3! 82 36 36 33 3S 28 so 30 Jl 37 

43 97 37 63 33 38 38 30 39 36 47 47 38 37 38 28 

29 36 92 24 38 29 30 33 2S 27 27 38 32 36 30 41 31 3! 3! 

47 9S 45 32 37 33 30 " 27 32 42 3S JJ 31 29 36 32 30 28 J7 38 

30 49 " 72 48 36 38 " 31 49 33 so ., 68 so 43 S3 39 " 
21 28 2S " 16 2S 13 14 23 27 17 33 17 !6 22 26 33 18 18 16 19 " 
28 30 33 24 8l 23 31 27 30 38 22 3S 33 36 28 39 48 2S 

48 40 41 S2 " 33 42 30 42 31 38 36 39 33 39 38 39 31 " 
32 38 48 28 4S 99 43 26 42 3S 30 29 " 48 so so 39 41 37 36 

40 40 4! 29 98 41 23 32 29 37 41 40 40 32 33 26 32 3S 

29 2S 23 46 46 90 87 32 37 18 22 " " 46 32 28 40 " 49 so 

49 24 19 2S 39 75 " 27 26 17 25 29 19 21 21 36 23 41 27 

46 29 34 19 42 46 9l 32 37 21 2S " 61 49 31 2S 40 " S2 29 

47 24 28 24 26 39 77 63 26 2S 17 27 31 18 20 22 37 2S 39 23 

39 36 so 29 39 " 29 30 9S 3S so 37 63 S3 " 39 Sl S3 " 40 

36 38 2S 27 20 27 39 42 38 41 32 31 38 16 47 

10 40 30 " 47 37 29 3l 27 90 24 27 3S 30 41 S2 23 42 so 36 

42 16 " 31 38 32 26 38 86 43 3! 39 41 2S " 41 30 36 39 

11 29 38 17 so 24 22 31 30 28 89 27 Sl 37 49 42 38 37 31 so 2S 27 

37 4S 3l 32 21 22 3l 23 82 38 38 37 40 27 38 25 27 30 24 26 

12 4~ 41 28 30 48 48 35 97 61 " 56 " 31 60 40 

41 25 33 22 JJ 24 20 39 3! 24 9S 33 40 32 3! 21 29 16 27 27 40 

13 21 31 29 23 30 40 36 39 31 97 68 42 40 26 46 36 

38 47 36 46 40 Sl 48 33 63 43 Sl 67 8l 37 33 47 38 42 49 

14 27 33 30 3l 55 42 41 39 41 41 96 92 39 31 " 40 

37 40 30 46 39 46 42 33 S4 34 39 63 76 " 37 30 32 30 43 46 

15 21 30 38 19 28 30 " 28 40 29 34 43 34 93 37 34 38 28 36 

40 42 40 34 23 62 3S 32 " 38 JJ " 39 32 33 30 46 41 32 41 

16 20 27 20 30 25 16 29 41 33 27 37 " 31 99 32 36 25 22 33 

37 47 33 40 32 43 31 28 46 49 49 38 42 34 93 41 33 30 3l 28 48 

17 32 31 38 28 40 30 16 24 47 30 43 34 29 78 " 26 

37 " 36 48 38 31 22 39 22 40 45 38 42 27 22 78 42 30 " 
18 29 3S 19 36 26 24 28 " 34 30 22 38 32 43 28 24 " 36 28 28 

47 35 31 31 3! 27 Sl 36 32 36 39 31 39 25 30 70 36 37 33 

19 29 21 32 30 28 36 " 3l 37 29 39 39 29 36 9S 43 33 

28 36 47 37 46 60 " 44 40 27 37 " 3l Sl 

20 39 21 S2 36 43 26 " 40 36 62 34 36 36 99 40 36 

46 29 38 28 so 32 32 29 29 39 so 27 37 46 21 33 27 28 6! 36 37 

21 JJ 43 37 19 38 33 42 40 49 35 32 48 " 36 37 S9 92 32 

so 49 37 " 30 37 49 37 49 33 S3 41 S2 30 34 37 41 93 36 

22 23 32 27 34 2S 29 39 36 36 so 38 48 42 36 " 49 30 94 

31 38 JJ 42 32 " 2S 24 S2 38 S2 40 32 43 33 37 30 30 31 97 

Notes. 
(i) Signatures/templates 7 and 8 are from one individual, and signatures/templates 13 and 14 belong to 

another single individual (data were collected several weeks apart). 
(ii) Upper cell entry indicates the forward match percentage and the lower cell entry indicates the reverse 

match percentage. 
(iii) A shaded cell indicates a forward match of 75% or greater and a reverse match of 60% or greater. 
(iv) Boldly outlined cells are unusual observations. 
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66% forward match 

70% forward match 

Figure 17. Forward matches for signature 17 of Table 1 
against library templates 17 and 21 respectively. 
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Figure 18. From left to right, first hand image of individual 21, then hand 
images 1 to 5 of individual 17. 

6.3. Matching of vein signatures using fuzzy relaxation 

22 

The classical approach to matching images is to use correlation and sequential matching (Gottesfeld 
Brown, 1992). Correlation matching methods include: correlation coefficients, sum of absolute 
differences in intensity, sequential thresholding, sign change criteria, and region overlap criteria (such as 
the constrained sequential correlation matching algorithm just described). Infrared back-of-hand images 
of a single hand, both raw and processed, exhibit marked variability (e.g. Figure 14). This is primarily 
due to specular reflection, clumping of hair, the extent of venous engorgement, the mobility of 
subcutaneous veins, and registration error. These factors collectively diminish the accuracy of correlation 
matching. Signature 17 of Table 1 is a case in point. An alternative approach to sequential correlation for 
matching signatures is to use a graph theoretic approach. "Graph theoretic ... matching methods have 
the advantage that they are capable of dealing with the problems caused by differences in imaging 
geometries (location of sensors, viewing angles, etc.) noise, and the limitations of the image segmentation 
algorithms better than template matching methods" (Ranganath & Chipman, 1992, p. 631). In relation to 
vein signature images variability is due to segmentation and registration error. Generally speaking 5 types 
of segmentation error are possible: 

(i) mismeasured attributes: the presence of noise in an image can affect the quantitative 
measurement of objects in the segmented image thus leading to misclassification; e.g. a length of 
vein in one signature image might appear longer or shorter than in another signature image of the 
same hand; 

(ii) missing objects: an object not clearly visible due to glare, shadows, or occlusion is not 
represented in the segmented image; 

(iii) false objects: extraneous marks or shadows appear as objects in the segmented image; 

(iv) fragmented objects (oversegmentation): noise-induced spurious edges fragment an object into 
more than one region in the segmented image; 

(v) merged objects (undersegmentation): two or more objects are merged to become one region in 
the segmented image as a result,of noise-induced blurred edges. 

The graph theoretic methods that address these segmentation errors are classified as structural matching 
techniques. They include dynamic programming using edge-image graphs (Fukunaga, 1991), and fuzzy 
relaxation using association graphs (Ranganath & Chipman, 1992). An edge-image graph represents 
objects or regions in an image by nodes and their relationships by arcs. For example a vein signature 
might be represented by a series of line segments joining endpoints and junctions (see Figure 19). An 
edge-image graph could then be constructed by assigning nodes to the midpoints of the line segments and 
defining an arc as the ·distance or angle between nodes. When matching pairs of images (e.g. vern 
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signature against library template) the association graph is more appropriate. An association graph is 
constructed from two image graphs. Each node represents a mapping between a node in one image graph 
and a node in the other; i.e. a mapping between objects in one image and objects in the other. An arc 
between two as::;ociation graph nodes represents the degree of compatibility between two mappings. The 
largest fully connected subgraph (maximal clique) in the association graph corresponds to the best 
mapping of objects in one image to those in the other. Yang, Snyder, and Bilbro (1989) have used 
association graphs to deal with the problem of oversegmentation. However they made "no attempt to 
assign merit values to the association graph nodes, or to the compatibilities between nodes. So if there are 
missing objects or extra regions there is no assurance that the largest clique actually represents the best 
match" (Ranganath & Chipman, 1992, p. 632). By assigning weights to each possible object to object 
mapping, i.e. each node of the association graph, a suitable updating or relaxation rule can be applied 
iteratively to adjust node weights until some convergence criterion is met. Davis (1979) applied discrete 
relaxation to an association graph in a boundary matching application. He used discrete relaxation to 
reduce the size of the association graph by deleting nodes and arcs - thereby decreasing the number of 
cliques to be evaluated. After relaxation he evaluated all cliques of the association graph using a cost 
formula to determine the optimal one. Price (1986) applied probabilistic relaxation to an association 
graph. The method requires that there be a one-to-one correspondence between the objects of the input 
image and those of the reference image (i.e no segmentation errors). Initial node weights, probabilities, 
are assigned on the basis of this assumption. Thus in the case of extraneous objects introduced by 
segmentation error it becomes necessary to define null objects. The determination of the probability that a 
given object maps to a null object poses a pijzzling but artificial problem. The fuzzy relaxation approach 
described by Ranganath and Chipman (1992) uses an updating rule that incorporates contextual 
information. The contextual information is provided by a set of real-valued attributes (attribute vector) for 
each object; e.g. length, area, circularity, texture (i.e rotation and translation invariant measures). Each 
node of the association graph, i.e. object-to-object mapping, is assigned a weight based on the cumulative 
sum of the absolute differences between object attributes (differences are normalised to be in the interval 
[0,1]). Similarly each arc is assigned a normalised weight based on the cumulative sum of differences 
between relationships between pairs of objects. After fuzzy relaxation nodes with weights below a chosen 
threshold are discarded and the sum of the node weights for each fully connected subgraph (clique) of the 
association graph is calculated. The clique with the highest sum is then deemed to be the best mapping of 
objects from one image to the other- no cost formula is used. The fuzzy relaxation method is able to deal 
with problems of mismeasured attributes, missing objects, and false objects. Moreover by making slight, 
intuitively and analytically natural modifications to the method it can deal with over- and 
undersegmentation errors. 

We are currently investigating the fuzzy relaxation method as means of matching pairs of vein 
signatures (medial axis representations). As an example consider the line segment representations of the 
two vein signatures shown in Figure 19. 
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Figure 19. 

signature 1 

(model) 

d 

signature 2 

(image) 
Two vein signatures, from the same hand, and their respective line segment representations. 

24 

E 

To simplify the discussion let signature 1 be called the model and signature 2 be called the image. Further 
the labelled line segments of the model are objects whilst those of the image are regions. The association 
graph for the modeUimage pair is a complete graph with 7 x 8 =56 nodes and 56 x (56- 1) x Y2 = 1540 
arcs. Tables 3 and 4 list the length and angle of orientation with respect to the horizontal for the objects 
and regions respectively. Length and angle are attributes (measured in pixel size units and degrees 
respectively). Tables 5 to 8 list the distance and angle relations for the objects and regions respectively. 
The distance relation is defined to be the length of the line segment joining the midpoints of two objects or 
two regions (symmetric matrix). The angle relation is defined to be the positive angle this line forms with 
the horizontal. Note however that the angle relation matrix is not symmetric. For example, as Figure 20 
shows, the angle between A and B is not the same as that between B and A (their difference however is 
always 180°). 

Table 3. Object attributes for signature 1 (model) of Figure 19. 

a 
b 
c 
d 
e 
f 
g 

engt h 
91.0 
80.2 

199.3 
96.0 
76.1 

208.0 
67.6 

angle 
123.3 
100.0 
101.9 
90.6 

170.2 
115.9 

. 14.8.4 
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Table 4. Region attributes for signature 2 (image) of Figure 19. 

A 
B 
c 
D 
E 
F 
G 
H 

th eng1 
91.4 

113.7 
73.6 

195.3 
84.0 
55.0 

199.3 
72.6 

angle 
107.8 
124.2 
97.0 

100.6 
90.0 

179.0 
110.3 
128.3 

Table 5. Distance relation for the objects of signature 1 (model) depicted in Figure 19. 

a 
b 
c 
d 
e 
f 
g 

a 
0.0 

93.7 
177.5 
242.5 
76.7 
149.2 
143.7 

b c 
93.7 177.5 
0.0 88.9 
88.9 0.0 
148.9 76.7 
44.9 105.4 
122.1 118.8 
71.7 48.2 

d e f 2 
242.5 76.7 149.2 143.7 
148.9 44.9 122.1 71.7 
76.7 105.4 118.8 48.2 
0.0 177.1 193.1 124.9 
177.1 0.0 87.4 67.2 
193.1 87.4 0.0 73.9 
124.9 67.2 73.9 0.0 

Table 6. Angle relation for the objects of signature 1 (model) depicted in Figure 19. 

a 
b 
c 
d 
e 
f 
g 

a 
0.0 

173.0 
159.7 
171.0 
144.5 
118.2 
147.4 

b c 
353.0 339.7 
0.0 325.8 
145.8 0.0 
169.7 197.8 
47.3 350.7 
79.4 36.1 
113.0 19.4 

d e f g 
351.0 324.5 298.2 327.4 
349.7 227.3 259.4 293.0 
17.8 170.7 216.1 199.4 
0.0 182.1 209.0 198.4 
2.1 0.0 275.3 330.6 

29.0 95.3 0.0 46.9 
18.4 150.6 226.9 0.0 

Table 7. Distance relation for the regions of signature 2 (image) depicted in Figure 19. 

A 
B 
c 
D 
E 
F 
G 
H 

A 
0.0 

100.2 
166.8 
222.1 
292.1 
135.8 
159.7 
184.8 

B c 
100.2 166.8 

0.0 83.3 
83.3 0.0 

158.8 80.7 
225.4 143.3 
76.1 42.7 

155.4 130.0 
133.6 70.4 

D E F 
222.1 292.1 135.8 
158.8 225.4 76.1 
80.7 143.3 42.7 
0.0 70.0 88.4 

70.0 0.0 158.1 
88.4 158.1 0.0 

113.8 170.2 93.3 
41.0 108.6 57.8 
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G 
159.7 
155.4 
130.0 
113.8 
170.2 
93.3 

0.0 
77.1 

25 

H 
184.8 
133.6 
70.4 
41.0 

108.6 
57.8 
77.1 

0.0 
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Table 8. Angle relation for the regions of signature 2 (image) depicted in Figure 19. 

A 
B 
c 
D 
E 
F 
G 
H 

A 
0.0 

221.6 
199.2 
181.7 
181.1 
188.0 
152.4 
176.9 

B 
41.6 
0.0 
172.1 
157.8 
164.3 
141.4 
115.3 
145.1 

c D E F 
19.2 1.7 1.1 8.0 
352.1 337.8 344.3 321.4 
0.0 323.1 339.8 237.4 
143.1 0.0 359.2 171.9 
159.8 179.2 0.0 175.1 
57.4 351.9 355.1 0.0 
82.9 45.0 27.8 94.3 
112.6 23.7 8.2 149.9 

Figure 20. The angle relation for the 
mapping A to B and the mapping B to A 
respectively. 

G 
332.4 
295.3 
262.9 
225.0 
207.8 
274.3 
0.0 

236.1 

26 

H 
356.9 
325.1 
292.6 
203.7 
188.2 
329.9 
56.1 
0.0 

The fuzzy relaxation approach to determining the best mapping of regions to objects using the association 
graph is as follows: 

1. Calculate the initial node weights 
For each node of the association graph, i.e. a region-to-object mapping, a weight is calculated based 
on the cumulative sum of the absolute difference in attributes. For node pair (i, j) the initial mapping 

weight is given by the equation 

n 

n- L,lxk(i)- Yk(j)IWk 
S(i, jiO) = --"k.::,=l'-------

n 

where xk and Yk are the k-th attributes of the i-th region of the image (signature 2) and the j-th object 
of the model (signature 1) respectively, Wk is a weighting constant used for scaling and indicating the 

relative importance of the k-th attribute, and n is the number of attributes. For example the node 
(A,b) has weight: 

( )(0)- 2- (191.4- 80.21+ (208.0- 55.0)+1107.8 -100.01 + (179.0- 90.0)) -s 1, 2 - 2 - 0. 92, 

where, in this case, the normalising factor Wk is the reciprocal difference between the observed 
maximum and minimum for the k-th attribute for all objects and regions. 

2. Calculate arc weights or compatibility coefficients 
For each arc between nodes (i,j) and (h,k) a weight is calculated based on the absolute sum of 

differences between relations. The value of this weight is determined by the differences in the 
relations between regions i and h, and objects j and k. The calculation is similar to that for node 
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weights but uses relation values corresponding to pairs of regions and pairs of objects rather than 
attribute values. For example the arc (A,b;B,c) is assigned the weight: 

C( ) 
2- (1100.2- 88.91 +(292.1-41.0)+141.6- 325.81 + (180)) 

1,2;2,3 = - 0.77. 
2 

Note: because the arctan function is not continuous the absolute difference of the angle relation 
must be subtracted from 360° if it is greater than 180 o ; e.g. 141.6- 325.81 is interpreted as 
(360.0 - 284.2). 

Once again the normalising factors are based on maximum and minimum values. To prevent 
mappings of a given region to more than 1 object the value of C(i,j;i,k) is defined to be 0. Similarly 

C(i,j;h,j) is defined to be 0. 

3. Update node weights using the fuzzy relaxation rule 
Node weights are updated according to the rule 

S(i,j)(r+tl = a.S(i,j)<Ol + (1- a.)[_!_ ±(m~x(S(h,k)<rlC(i,j;h,k)))], 
L h=l k-1 

where a is a constant in the interval [0,1], Lis the number of regions and K is the number of objects. 
After all the node weights have been updated they are normalised so that their sum remains constant. 
This is accomplished by multiplying each node weight by the factor: 

L K 
LLS(i,j)(O) 
i=l j=l 
L K 

I,.I,.s(i,ji'+l) 
i=l j=l 

4. Test the relaxation termination condition 
Test the condition 

ls(i,jf+Il- S(i,j)<'ll < o, 

where o is a predefined small number; e.g. 0.001. If the condition is not satisfied return to step 3. 

5. Evaluation of the result 
Using a predetermined threshold value discard all nodes that have low weights. Next find all the 
cliques in the remaining association graph. The clique with the highest sum of node weights is 
deemed to be the best mapping of regions to objects. 

Appendix B contains a listing of an ANSI C program used to generate the initial and final node weights 
for the mapping of regions to objects for the image and model shown in Figure 19. The results for 
a.= 0.15 and o = 0.001 are shown in Table 9. For a threshold value of 0.85 the maximal clique is: (B,a), 
(C,b), (D,c), (E,d), (F,e), (G,f), (H,g). Thus region A does not map to any object- it is an extraneous 
region. 
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Table 9. Final node weights for the mapping of regions (signature 2) to objects (signature 1). 

N d ( b' . ) o e o Jject mappmg; I . 'al d . h mtl no ewe1g1 t F' al d m no e weight 
S(A,a) 0.91 0.79 
S(A,b) 0.92 0.65 
S(A,c) 0.61 0.52 
S(A,d) 0.89 0.50 
S(A,e) 0.60 0.65 
S(A,f) 0.57 0.63 
S(A,g) 0.81 0.60 
S(B,a) 0.92 0.85 
S(B,b) 0.75 0.74 
S(B,c) 0.59 0.57 
S(B,d) 0.75 0.53 
S(B,e) 0.62 0.72 
S(B,f) 0.65 0.62 
S(B,g) 0.83 0.63 
S(C,a) 0.80 0.67 
S(C,b) 0.96 0.88 
S(C,c) 0.56 0.68 
S(C,d) 0.89 0.65 
S(C,e) 0.58 0.71 
S(C,f) 0.45 0.58 
S(C,g) 0.80 0.72 
S(D,a) 0.53 0.51 
S(D,b) 0.62 0.69 
S(D,c) 0.98 0.89 
S(D,d) 0.62 0.69 
S(D,e) 0.22 0.58 
S(D,f) 0.87 0.65 
S(D,g) 0.43 0.71 
S(E,a) 0.79 0.48 
S(E,b) 0.93 0.65 
S(E,c) 0.56 0.72 
S(E,d) 0.96 0.87 
S(E,e) 0.52 0.52 
S(E,f) 0.45 0.53 
S(E,g) 0.73 0.66 
S(F,a) 0.57 0.64 
S(F,b) 0.47 0.72 
S(F,c) 0.10 0.58 
S(F,d) 0.37 0.49 
S(F,e) 0.88 0.87 
S(F,f) 0.15 0.59 
S(F,g) 0.67 0.74 
S(G,a) 0.57 0.57 
S(G,b) 0.55 0.62 
S(G,c) 0.95 0.74 
S(G,d) 0.55 0.55 
S(G,e) 0.26 0.63 
S(G,f) 0.94 0.89 
S(G,g) 0.47 0.70 
S(H,a) 0.91 0.59 
S(H,b) 0.82 0.73 
S(H,c) 0.44 0.72 
S(H,d) 0.71 0.61 
S(H,e) 0.75 0.73 
S(H,f) 0.49 0.65 
S(H,g) 0.98 0.89 

Notes. 
(i) Results are for a= 0.15 and 8 = 0.001 (required 5 iterations for convergence). 
(ii) Shaded cells indicate final weights greater than or equal to 0.85. 
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6.4. Discussion 
An advantage of the fuzzy relaxation method (FRM) over the sequential correlation matching method 

(SCMM) is that registration need not be performed. Matching is done on the basis of the attributes and 
distance and angle relationships within a signature and not on absolute spatial location. We believe 
though that registration is necessary to prevent mismatching in cases similar to that of Figure 17. If this 
turns out to be the case then perhaps the coordinates of the midpoints of the objects and regions (line 
segments) could be used as attributes. A large sample study is required to gauge the performance of this 
method and to compare it against the SCMM. Naturally this will entail determining and comparing the 
FAR and FRR for the two methods as well as making a comparison on the basis of computational speed 
and efficiency. In the preceding example the vein signatures were amenable to a simple line segment 
representation. However when dealing with a signature like that of Figure 21 the simple decomposition of 
the signature into line segments between junctions and endpoints is clearly not adequate. Consequently a 
more sophisticated encoding scheme needs to be devised. In addition further research is needed to 
develop strategies for determining the optimal attributes, relations, weighting factors, and value of a for 
theFRM. 

Figure 21. An example of a 
signature that is not amenable to line 
segment decomposition using 
endpoints and junctions. 

Our present study indicates the need to improve the image acquisition system particularly with regard 
to registration; at least as far as the SCMM is concerned. An obvious way of improving registration is to 
raise the height of the existing docking frame. Alternatively the thumb and the side of the hand adjacent 
to· the thumb could be used to locate a hand for imaging (Figure 22). The lighting system also needs to be 
improved. The current system, because it uses a single IR source, induces surface shadows and some 
specular reflection; for example the plateau evident in the centre of Figure 8(a) is due to specular 
reflection. This affects the performance of the segmentation algorithm leading to segmentation errors. 
"Even lighting calls for an adequate number of lights, an equal amount of illumination on both sides of 
the camera-subject axis, and a proper distribution of lighting over the subject." (Newman, 1976, p. 82). 
Whert illuminating a convex surface using infrared Newman has suggested using a lighting angle of about 
55° as shown in Figure 23. To minimise specular reflection the camera should be given a little forward 
slant (Newman, 1976, p. 86). Infrared polarising filters need to be investigated as a means of reducing 
specular reflection. Another possibility for reducing intense reflection is to provide electronic attenuation 
of the intensity of theIR source(s). For example the frame-grabbing software could readily measure the 
entropy and histogram cl).aracteristics of a captured image and then use this information to adjust the 
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lighting level. Alternatively the lighting intensity could be encoded on a smart-card along with an 
individual's library template. 

Figure 22. An alternative method of 
positioning the hand for imaging. 

IR source 

Figure 23. Ideal lighting angle for imaging 
the back of a hand. 

7. VEXED 

Whilst DIMPAL provided a useful research environment for algorithm development, it was not fast 
enough for our purposes (several minutes to extract a signature). DIMPAL operators and functions are 
designed to handle images of different sizes and data types. The cost incurred by this generality is that of 
additional computational overhead. To obtain speed improvements it was necessary to extract the 
necessary source code from DIMPAL and to modify it to work on fixed size 640H x 480V byte images. 
The resulting program, VEXED, short for vein extraction and equivalence determination, is written in 
ANSI C for IBM's Operating System/2 (OS/2) ver~ion 2.x. This operating system was chosen because it 
provides a flat linear 32-bit memory address space, a 32-bit graphics engine, and pre-emptive 
multitasking. DOS source code provided by Data Translation for interfacing to the DT2855 frame­
grabber served as a basis for the development of custom native OS/2 interface code. VEXED can acquire 
an image and extract the medial axis representation of the vein pattern in around 120 seconds (as opposed 
to nearly 10 minutes in DIMPAL). Tophat transformation is by far the most computationally expensive 
part of the segmentation algorithm. Van Herk (1992) devised a fast algorithm for local maximum and 
minimum filters on rectangular and octagonal kernels. The algorithm reduces the computational 
complexity of the closing for the tophat transformation to only 12 maximum and 12 minimum operations 
per pixel. Even so . re11l-time processing ultimately requires the use of a real-time morphological 
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processor. Kuczborski, Attikiouzel, and Crebbin (1992) have proposed a V'"LSI arch't t c 
· 1 · al th · al h 1 . 1 ec ure .or 
tmp ementt~g ~ey~sc e .rna .ematl~ morp ~ og~ usmg a redundant number representation. Edith 
Cowan Umverstty m conJunctiOn wtth the Umverstty of Adelaide are currently working on all' 
arsenide VLSI design based on this novel data representation. a g tum 

8. SUMMARY AND CONCLUSION 

Our prototype biometric system, VEXED, demonstrates that a commercial back-of-hand biometric 
system is technically viable. The requisite hardware is low cost and readily available off-the-shelf. 
VEXED is able to capture, st~re, and p~ocess i~ared back-of-hand images,. build and store library 
templates, and perform sequential correlat10n matching of stored or newly acqmred signatures against a 
library of signature templates. The system exploits the near infrared sensitivity of the INTERLINE 
TRANSFER CCD chip for the purpose of obtaining more highly contrasted images of vein structure than 
could otherwise be seen with the naked eye. The custom segmentation algorithm is based on 
Mathematical Morphology and incorporates a novel noise removal filter7 built from a maximum of linear 
closings followed by a minimum of linear openings. Registration is performed by translating the centroid 
of the domain of the digital image of a hand to a common origin and rotating about this origin until the 
axis joining the centroid to the midpoint at the wrist is vertical. Vein patterns are stored as medial axis 
representations. A library template is constructed from several independently acquired signatures. 
Matching involves comparing a given signat,Ure against either a single template (as would be the case for a 
smart-card) or a library of templates (as in the case of a database). Matching is two-fold: a signature to be 
verified is matched against a dilated template (forward match), using constrained sequential correlation, 
and then the template is matched against the dilated test signature (reverse match). A successful match 
requires both the forward and reverse match percentages to be high. Our estimates of the FAR and FRR 
for VEXED are initial estimates only because they are based on a small sample size; namely 20 people 
and 100 hand images. A more detailed study is required, using images from more than 100 people, to 
determine the most appropriate forward and reverse match percentages and to more reliably estimate the 
FAR and FRR. In addition the optimal sizes of the structuring elements used in the segmentation 
algorithm, and in particular the size of the octagon used in the tophat transform, need to be determined. 

It is important to realise that near infrared imaging doesn't guarantee that vein patterns will be boldly 
delineated and contrasted. Indeed in a preliminary study prior to the cross-matching experiment of section 
6.2., we obtained 5 x 34 images of the backs of hands from 34 students in order to evaluate the 
effectiveness of near infrared imaging. For one of the 34 students no vein pattern could be discerned from 
any of the IR images. One of the conditions known to reduce or obscure the venous pattern is a relatively 
thick layer of subcutaneous fat (Newman, 1976, p. 118). Further research needs to be done to determine 
the optimal band of the actinic range for imaging subcutaneous veins. This will involve the testing of IR 
sources with different operating wavelengths in conjunction with an extensive range of IR filters and 
possibly ceo cameras. If, after refining the imaging system, there are still individuals whose vein 
structure cannot be seen then the usefulness of this biometric system as a method of access control will be 
severely diminished. Consequently it will be necessary to combine the vein signature (or the fact that 
there is no signature) with a secondary trait such as the outline of the hand, or its area, or the shape of the 
knuckles; or with a more traditional access control method such as a PIN. Alternatively the vein pattern 
of the palm of the hand or at the wrist could be investigated as a means of biometric identification. The 
existing segmentation and matching strategies would still be relevant though some parameters would need 
to be modified; e.g. the size of the structuring element used for tophat transformation. 

Opportunities for further research include: 

1. Redesigning the image acquisition unit: 
identifying the ideal band of actinic infrared for imaging the subcutaneous veins (this will 
determine the choice of IR filter); 
constructing a two-source IR lighting system as in Figure 23; 
investigating the use of polarising filters to reduce specular reflection; 
implementing software control of the intensity of theIR source(s); 

7 The filter is nota morphological filter in the sense of Serra (1988) because it is not idempotent. 
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implementing and testing the docking block design (Figure 22) as well as other design ideas for 
constraining a hand for imaging. 

2. Improving the segmentation algorithm: 
adding a grey-level dimension to the line segment structuring elements; e.g. saw-tooth, ramp, 
parabola; 
investigating segmentation using the watershed transform (Meyer & Beucher, 1990; Dougherty, 
1993). 

3. Researching additional registration and matching algorithms: 
exploring fuzzy relaxation on association graphs further; 
exploring the possibility of using neural networks to identify signatures. 

4. Developing a real-time back-of-hand vein pattern biometric system: 
purchasing/developing a real-time morphological processor; 
modifying the existing segmentation and matching algorithms to take advantage of the 
morphological processor. 

5. Validation and testing: 
using a statistically representative sample of individuals to test the integrity of the system - in 
particular obtain refined estimates of the FAR and FRR. 
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APPENDIX A 

Mathematical Morphology 

"As originally conceived by Georges Matheron, mathematical morphology concerns the analysis of 
binary images by means of probing with structuring elements" (Dougherty, 1993, preface). The theory 
has since been extended to grey-tone images (functions) and most recently Serra and Matheron (Serra, 
1988) have generalised the theory to complete lattices. 

Consider an ink pen drawing on a piece of white paper; a binary image. The image can be modelled 
by a set of points in R2

, where R is the set of real numbers, which locate the image foreground. Now 
consider a black-and-white photograph. Black-and-white is a misnomer as the photograph actually 
consists of grey tones. This image can be modelled by a function f: R2 ~ R. When an image is digitised, 
it is sampled at a finite number of points and the brightness value at each point is mapped to a discrete 
value. A digital binary image can be represented by a set of points in Z2

, where Z is the set of integers, 
and a digital grey-tone image can be represented by a discrete-valued function ]:Z2 ~ Z. In the 

definitions that follow, A,B c Z2 represent discrete binary images (sets of foreground points), and the 
functions f:Z2 ~ Z and g:Z2 ~ Z represent discrete grey-tone images. Furthermore, A (resp. f) is 

called the image and B (resp. g) is called the structuring element. The operation+ (resp. -)denotes either 
vector addition (resp. subtraction) or arithmetic addition (resp. subtraction). The two elementary 
operations of mathematical morphology are the dilation and the erosion. 

Definition 1. Dilation. 

.B(A,B)=AEBB= U Ab, and 
beB 

.B(J,g)(x) = (!$ g)(x) = max {J.(x)+ g(z)}, 
zedomain(g) 

(x-z)Edomain(/) 

where x=(x,y)eZ2
, Ab ={a+b I aeA}, fz(x)=f(x-z). 

Definition 2. Erosion. 

l:(A,B) =(A e B)= nA-b= {x IBx c A}' and 
beB 

e(J,g)(x) = ( f0 g )(x) = min {tz<x)- g(z)}' 
zedomain(g) 

where B={-blbeB} andg(x)=g(-x). 

The two most elementary morphological image filters are the opening and the closing. These are 
tninslation invariant, increasing (preserve order relations), and idempotent mappings. 

Definition 3. Opening. 

Definition 4. Closing. 

&(A, B)= .B(t(A,B),B), 

&{f,g) = .B(t(f,g),g). 

C(A,B) = l:(.B(A,B),B), 

C(f,g) = e(.B(f,g),g). 
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When the structuring element g only takes on the value zero on its domain (i.e, it is flat) it can be 
expressed by a point set B c Z

2 
(its domain). The grey-level dilation and erosion given in definitions 1 

and 2 then reduce to 

.S(J,B)(x) = (! E9 B)(x) = max{J(y)l y e Bx }, and 

e(J,B)(x) = ( f9B )(x) =min{J(y)IY E Bx}. 

Morphological gradient (Beucher's gradient) 

By definition the gradient of a function f(x,y) is the vector 'Vf = ( ix, ~). For a given point P(x,y), 

the norm of the vector gives the value of the maximal directional derivative off at P: 

Beucher (1978) proposed the following algorithm for calculating the norm of 'Vf (cited in Serra, 1982, p. 
441): 

where B is the unit disk. The digital version of Beucher's gradient (Serra, 1988, p. 312) is given by: 

.S(f,B)-e(f,B) 

2 

where B is a 3 x 3 cross-shaped (or square) structuring element. 
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APPENDIXB 

Implementation of the fuzzy relaxation method in c 
I* =================================================================================== 

AISAT Edith Cowan University 

Australian Institute 
of 

Perth Western Australia 

Security 
---1\ 

I \ 
and ._.-._! 

Applied Technology v 

PROJECT: Back-of-hand subcutaneous vein pattern biometric system 

AUTHOR: Andrew Mehnert 

SYNOPSIS: This program is an implementation of the fuzzy relaxation method applied 
to association graphs described in •Fuzzy relaxation approach for inexact 
scene matching•, Image and Vision Computing, 10(9), 631-640. 

==========================================================================~======== *I 

#include <stdio. h> 
tinclude <math.h> 

Ide fine ABS(A) ( ((A) <0)? (-(A)): ((A))) 
fdefine MAX(A,B) ( (A)<(B)?(B): (A)) 
tdefine MIN(A, B) ((A)< (B)? (A): (B)) 

#define NUMBER_OF_ATTRIBUTES 2 
tdefine NUMBER_OF_RELATIONS 2 
fdefine NUMBER_OF_OBJECTS 7 
tdefine NUMBER_OF_REGIONS 8 

tdefine ALPHA 0.15 
ldefine DELTA 0.001 
ldefine PI 3.141592654 

I* .... MAXIMUM MINUS MINIMUM FOR EACH ATTRIBUTE-- USED TO NORMALISE NODE WEIGHTS ••.. *I 
double reciprocal_attrib_wt_constants [NUMBER_OF_.ATTRIBUTES] = (208. 0-55.0,179.0-90. 0); 

I* .... ARRAY TO HOLD NORMALISING CONSTANTS FOR RELATIONS --CONSTANTS GENERATED BY PROGRAM .•.. *I 
double reciprocal_relat_wt_constants[NUMBER_OF_RELATIONS]; 

I* .... 3 ARRAYS: [2] HOLDS THE INITIAL NODE WEIGHTS, [0] AND [1] ARE USED TO HOLD rAND (r+l) WEIGHTS ••.• *I 
double node_weights[3] [NUMB~OF_REGIONS][NUMBER_OF_OBJECTS]; 

double arc_weights[NUMBER_OF_REGIONS][NUMB~OF_OBJECTS)[NUMBER_OF_REGIONS][NUMBER_OF_OBJECTS]; 

I* .... FIRST TWO ATTRIBUTES ARE USED TO COMPUTE NODE WEIGHTS; THE MIDFOINT COORDINATES ARE USED 
TO GENERATE OBJECT DISTANCE AND ANGLE RELATIONS. THE INITIALISATION DATA IS FOR SIGNATURE 
OF FIGURE 19 .... *I 

double object_attributes[NUMBER_OF_ATTRIBUTES+2] [NUMBER_OF_OBJECTS] 
( 

); 

/* LENGTH • I 
(91.0, 80.2, 199.3, 96.0, 76.1, 208.0, 67.6), 
/* ANGLE */ 
(123.3, 100.0, 101.9, 90.6, 170.2, 115.9, 128.4), 
I* X COORDINATE OF MIDPOINT *I 
(278, 371, 444.5, 517.5, 340.5, 348.5, 399), 
I* y COORDINATE OF MIDPOINT *I 
( -137' -148.5,-198. 5,-175' -181.5, -268.5' -214. 5) 

double object_relations[NUMBER_OF_RELATIONS] [NUMBER_OF_OBJECTS)[NUMBER_OF_OBJECTS]; 

I* .... FIRST TWO ATTRIBUTES ARE USED TO COMPUTE NODE WEIGHTS; THE MIDPOINT COORDINATES ARE USED 
TO GENERATE REGION DISTANCE AND ANGLE RELATIONS. THE INITIALISATION DATA IS FOR SIGNATURE 
OF FIGURE 19. • • • *I 

double region_attributes [NUMBER_OF_ATTRIBUTES+2] [NUMBER_OF _REGIONS] = 
( 

); 

t• LENGTH •; 
(91.4, 113.7, 73.6, 195.3, 84.0, 55.0, 199.3, 72.6}, 
!* ANGLE • I 
(107.8, 124.2, 97.0, 100.6, 90.0, 179.0, 110.3, 128.3}, 
I* x COORDINATE OF MIDPOINT • I 
(220, 295, 377.5, 442, 512, 354.5, 361.5, 404.5), 
I* y COORDINATE OF MIDPOINT *I 
(-221.5, -155, -166.5, -215, -216, -202.5, -295.5, -231.5) 

double region_relations [NUMBER_ OF _RELATIONS] [NUMBER_ OF _REGIONS] [NUMBER_OF _REGIONS] ; 

I • -----------------------------------------------------------------------------------------
PROGRAM STARTS HERE: 

(1) Calculate initial node weights and store in node_weights{O] and node_weights[2] 
(2) Calculate angle and distance relations for objects and regions independently 
(3) Calculate arc weights between all nodes of the association graph 
(4) Iteratively update node weights until the difference between the r and {r+ll 

weights is less than DELTA 

---------------------------------------------------------------------------------------- • ! 

void main(void) 
( 
int i,j, h, k, 1, 

new_node_weights, 

converged, 

I* .. USED TO INDEX ARRAYS. . *I 
I* .. TOGGLES BE'IWEEN 1 AND 0 TO INDICATE LATEST WEIGHTS, I.E. 

node_weights[O] or node_weights[l] .. *I 
I* .. 1 = CONVERGED .. *I 
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double 

iteration; t• .. ITERATION COUNTER. , • I 

absolute_sUDLof_differences 
difference, ' 
max_difference, 
sUDLof_ini tial_node_weights, 
s~of_new_node_weights, 
x_diff, 
y_diff, 
x_squared, 
y_squared, 
sum, 
product, 
max__product, 
normalising_factor, 
distance, 
max_dist, 
m.in_dist, 
theta; 

t• .. CALCULATE INITIAL MAPPING WEIGHTS S(i,j) (I.E. NODE WEIGHTS) •. •t 

sUIIL.of_initial_node_weights = 0. 0; 

for(i=O: i < NUMBER_OF_REGIONS: i++) 
for (j=O: j < NUMBER_OF_OBJECTS: j++) 

{ 
absolute_sw:n_of_differences = 0. 0; 

for (k=O: k < NUMBER_OF_ATTRIBUTES: k++) 
absolute_sUIJL.of_differences += ABS (reqion__attributes [kJ [iJ - object_attributes [kJ [j J) 

reciprocal_attrib_wt_constants (k] ; 

node_weights[OJ[iJ[jJ = node_weights[2J[iJ[jJ = 
(NUMBER_ OF _ATTRIBUTES - absolute_sUDL.Of_differences) 
NUMBER_ OF _ATTRIBUTES: 

sUIJLof_initial_node_weights += node_weights[O] [i) [j]; 
) 

t• .. CALCULATE DISTANCE RELATION (MIDPOINT-TO-MIDPOINT) AND ANGLE RELATION FOR REGIONS AND 
THEN FOR OBJECTS .. •t 

max_dist=O.O: 
min_dist=BOO.O; t• .. SIGNATURE IMAGE BUFFER IS 640H X 480V -->LENGTH OF DIAGONAL IS sqrt(640~2+480~2) .. •t 

for(i=O; i < NUMBER_OF_REGIONS; i++) 
for ( j =0: j < NUMBER_ OF _REGIONS: j ++) 

if(i!=j) 
{ 
x_diff = region_attributes[2J[jJ - region__attributes[2J[iJ: 
x_squared = x_diff•x_diff; 

y_diff = region_attributes [3J [j J - region_attributes [3 J [iJ: 
y_squared = y_diff*y_diff; 

distance= sqrt(x_squared + y_squared); 
max_dist = MAX(max_dist,distance); 
min_dist = MIN(min_dist,distance); 
theta= atan2(y_diff,x_diff)•lBO/PI: 
if (theta < 0) 

theta += 3 60: 
region_relations[OJ [iJ [jJ distance: 
region_relations[l] [i] [j] theta; 
) 

printf('REGION RELATIONS\n----------------\n'); 
printf(•Distance relation\n•); 
for(i=O; i < NUMBER_OF_REGIONS; i++) 

{ 
for ( j =0: j < NUMBER_ OF _REGIONS: j ++) 

print£ ( ''5 .lf, •, region_relations [OJ [iJ [j J): 
print£ ( • \n•); 
) 

print£ ( • \nAngle relation\n•); 
for(i=O; i < NUMBE~_OF_REGIONS; i++) 

{ 
for (j=O: j < NUMBER_OF_REGIONS: j++) 

print£ ( ''5 .lf, •, region_relations [lJ [iJ [j]): 
printf ( • \n'): 
) 

for(i=O; i < NUMBER_OF_OBJECTS; i++) 
for ( j =0; j < NUMBER_ OF _OBJECTS; j ++) 

if ( i ! = j) 
{ 
x_diff = object_attributes[2J [jJ - object_attributes[2] [iJ: 
x_squared = x_diff•x_diff; 

y_diff = object_attributes[3J [jJ - object_attributes[3) [i]: 
y_squared = y_diff•y_diff; 

distance= sqrt(x_squared + y_squared); 
max_dist = MAX(max_dist,distance); 
min_dist = MIN(min_dist,distance); 
theta= atan2(y_diff,x_diff)•lBO/PI; 
if (theta < 0) 

theta += 360: 
object_relations[OJ1iJ [jJ distance: 
object_relations [lJ [iJ [j J theta: 
) 

printf('\nOBJECT RELATIONS\n----------------\n'); 
printf ( •nistance relation\n•); 
for(i=O; i < NUMBER_OF_OBJECTS; i++) 

{ 
for ( j =0: j < NUMBER_ OF _OBJECTS: j ++) 

printf ( • '5 .lf, •, object_relations [OJ [iJ [j J): 
print£ ( • \n•); 
) 

print£ ( • \nAngle relation\n •) ; 
for ( i=O; i < NQMBER_OF _OBJ~~TS; i++) 

.{ . 
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for (j=O; 1 < NUMBER_OF_OBJECTS; j++) 
•. pr1ntf("\5.lf,•, object_relations(l)(i)(j)); 

pr1ntf ( "\n" l; 
} 

I* .. !;OW CALCULATE NORHALISDi'G CONSTANTS FOR EACH RELATION. . *I 

reciprocal_relat_wt_constants[O] = {max_dist - min_dist}; 

max_difference = 0. 0; 
for (i=O; i < NUMBER_OF_REGIONS; i++) 

for (j=O; j < NUMBER_OF_OBJECTS; j++) 
for (h=O; h < NUMBER_OF_REGIONS; h++) 

for (k=O; k < NUMBER_OF_OBJECTS; k++) 
{ 
difference= ABS(region_relations(l)[i)(h) - object_re1ations[l)[j)[k)}; 
if (difference > 180.0) 

difference = 360.0 - difference; 
max_difference = MAX(max_difference,difference); 
) 

reciprocal_relat_wt_constants [1] = max_difference; 
printf(•Relation normalising factors: Distance--> %6.4£; Angle--> %6.4£\n•, 

reciprocal_relat_wt_constants[O],reciprocal_relat_wt_constants[l]); 

I* .. CALCULATE ARC WEIGHTS FOR THE ASSOCIATION GRAPH. • *I 

print£ ( • \nARC WEIGIITS\n----------\n •) ; 

for (i=O; i < NUMBER_OF_REGIONS; i++) 
for (j=O; j < NUMBER_OF_OBJECTS; j++) 

for (h=O; h < NUMBER_OF_REGIONS; h++) 
for (k=O; k < NUMBER_OF_OBJECTS; k++) 

{ 
if ti==h II j==k> 

arc_weights[i) [j) [h) [k)=O.O; 
else 

{ 
absolute_swn_of_differences = 0. 0; 
for (1"0; 1 < NUMBER_OF_RELATIONS; 1++) 

{ 
difference = 

ABS(region_re1ations[1) (i) (h) - object_re1ations[1) (j) [k)); 
if ( 1 == 1 && difference > 180. 0 l 

difference = 360.0 - difference; 
absolute_swn_of_differences += difference/ 

reciprocal_relat_wt_constants(l]; 
) 

arc_weights[i) [j) (h) [k) =(NUMBER_OF_RELATIONS -
absolute_sUIILOf_differences) I 
NUMBER_ OF _RELATIONS; 

} 
printf(•C(%c,%c;%c,%c) %6.4£\n•, 'A'+i, 'a'+j, 'A'+h, 'a'+k, 
arc_weights[i)[j)[h)[k)); 
} 

I* .. APPLY FUZZY RELAXATION TO THE ASSOCIATION GRAPH. . *I 

new_node_weights = 1; 
iteration = 0; 
converged = 0; 

while ( ! converged) 
{ 
sum_of_new_node_weights = 0. 0; 

for(i=O; i < NUMBER_OF_REGIONS; i++) 
for (j=O; j < NUMBER_OF_OBJECTS; j++) 

{ 
sum= 0.0; 
for (h=O; h < NUMBER_ OF _REGIONS; h++) 

{ 
max_produc t = 0 • 0 ; 
for (k=O; k < NUMBER_OF_OBJECTS; k++) 

( 
product = node_weights( !new_node_weights] (h] (k] • 

arc_weights{i) [j) [h) [k); 
max_product = MAX( max_product, product); 
} 

sum += max_product; 
) 

node_weights[new_node_weights)[i) [j) = ALPHA*node_weights[2)(i)[j] + 
(1-ALPHA)*sum/NUMBER_OF_REGIONS; 

SUITLOf_new_node_weights += node_weights {new_node_weights] [ i] [ j] ; 
} 

I* NORMALISE NEW NODE WEIGHTS AND TEST FOR CONVERGENCE*/ 

converged = 1; 
normalising_factor = sum_of_initial_node_weights I sum_of_new_node_weights; 
for(i=O; i < NUMBER_OF_REGIONS; i++) 

for (j=O; j < NUMBER_OF_OBJECTS; j++) 
( 
node_weights [new_node_weights] [ i] [ j] •= normalising_factor; 
if (ABS(node_weights[new_node_weights) [i)(j) -

node_weights [ !new_node_weights] (i] (j]) >= DELTA) 
converged =,. 0; 

new_node_weights = !new_node_weights; 
iteration++; 

print£ ( • Iteration %d\n---------\n•, iteration); 

for(i=O; i < NUMBER_OF_REGIONS; i++) 
for (j=O; j < NUMBER_OF_OBJECTS; j++) 

printf("S(%c,\c) %4.2£ --> t4.2f\n', 'A'+i, 'a'+j, node_weights[2) [i] [j), 
node_weights[ !new_node_weights) (i) (j) l; 
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