330 research outputs found

    Single-cell western blotting.

    Get PDF
    To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-μm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution

    Modulatory Function of Invariant Natural Killer T Cells in Systemic Lupus Erythematosus

    Get PDF
    Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Multiple organ failure in SLE can be caused by immune dysfunction and deposition of autoantibodies. Studies of SLE-susceptible loci and the cellular and humoral immune responses reveal variable aberrations associated with this systemic disease. Invariant natural killer T (iNKT) cells are a unique subset of lymphocytes that control peripheral tolerance. Mounting evidence showing reductions in the proportion and activity of iNKT cells in SLE patients suggests the suppressive role of iNKT cells. Studies using murine lupus models demonstrate that iNKT cells participate in SLE progression by sensing apoptotic cells, regulating immunoglobulin production, and altering the cytokine profile upon activation. However, the dichotomy of iNKT cell actions in murine models implies complicated interactions within the body's milieu. Therefore, application of potential therapy for SLE using glycolipids to regulate iNKT cells should be undertaken cautiously

    Epitaxial Growth of Two-dimensional Insulator Monolayer Honeycomb BeO

    Full text link
    The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator comprised of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are conveniently grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 angstrom with an insulating band gap of 6 eV. Our low energy electron diffraction (LEED) measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moir\'e pattern analysis shows the BeO honeycomb structure maintains long range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complimentary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring novel 2D electronic materials.Comment: 25 pages, 7 figures, submitted to ACS Nano, equal contribution by Hui Zhang and Madisen Holbroo

    Metabolic syndrome and abdominal fat are associated with inflammation, but not with clinical outcomes, in peritoneal dialysis patients

    Get PDF
    BACKGROUND: In the general population, metabolic syndrome (MetS) is correlated with visceral fat and a risk factor for cardiovascular disease (CVD); however, little is known about the significance of abdominal fat and its association with inflammation and medication use in peritoneal dialysis (PD) patients. We investigated the relationship of visceral fat area (VFA) with C-reactive protein (CRP) levels and medication use in PD patients and followed their clinical outcomes. METHODS: In a prospective study from February 2009 to February 2012, we assessed diabetes mellitus (DM) status, clinical and PD-associated characteristics, medication use, CRP levels, components of MetS, and VFA in 183 PD patients. These patients were categorized into 3 groups based on MetS and DM status: non-MetS (group 1, n = 73), MetS (group 2, n = 65), and DM (group 3, n = 45). VFA was evaluated by computed tomography (CT) and corrected for body mass index (BMI). RESULTS: Patients in group 1 had smaller VFAs than patients in groups 2 and 3 (3.2 ± 1.8, 4.6 ± 1.9, and 4.9 ± 2.0 cm(2)/[kg/m(2)], respectively, P < 0.05) and lower CRP levels (0.97 ± 2.31, 1.27 ± 2.57, and 1.11 ± 1.35 mg/dL, respectively, P < 0.05). VFA increased with the number of criteria met for MetS. After adjusting for age, body weight, and sex, CRP and albumin levels functioned as independent positive predictors of VFA; on other hand, the use of renin-angiotensin system blockers was inversely correlated with VFA in PD patients without DM. In the survival analysis, DM patients (group 3) had the poorest survival among the 3 groups, but no significant differences were found between groups 1 and 2. CONCLUSION: This study showed that VFA and MetS are associated with CRP levels but cannot predict survival in PD patients without DM. The complex relationship of nutritional parameters to VFA and MetS may explain these results. The type of antihypertensive medication used was also associated with the VFA. The mechanisms behind these findings warrant further investigation

    Investigation of spectral conversion of d(TTAGGG)4 and d(TTAGGG)13 upon potassium titration by a G-quadruplex recognizer BMVC molecule

    Get PDF
    We have introduced a G-quadruplex-binding ligand, 3,6-bis(1-methyl-4-vinylpyridinium)carbazole diiodide (BMVC), to verify the major structure of d(T2AG3)4 (H24) in potassium solution and examine the structural conversion of H24 in sodium solution upon potassium titration. The studies of circular dichroism, induced circular dichroism, spectral titration and gel competition have allowed us to determine the binding mode and binding ratio of BMVC to the H24 in solution and eliminate the parallel form as the major G-quadruplex structure. Although the mixed-type form could not be eliminated as a main component, the basket and chair forms are more likely the main components of H24 in potassium solution. In addition, the circular dichroism spectra and the job plots reveal that a longer telomeric sequence d(T2AG3)13 (H78) could form two units of G4 structure both in sodium or potassium solutions. Of particular interest is that no appreciable change on the induced circular dichroism spectra of BMVC is found during the change of the circular dichroism patterns of H24 upon potassium titration. Considering similar spectral conversion detected for H24 and a long sequence H78 together with the G4 structure stabilized by BMVC, it is therefore unlikely that the rapid spectral conversion of H24 and H78 is due to structural change between different types of the G4 structures. With reference to the circular dichroism spectra of d(GAA)7 and d(GAAA)5, we suggest that the spectral conversion of H24 upon potassium titration is attributed to fast ion exchange resulting in different loop base interaction and various hydrogen bonding effects

    Structural insights into the electron/proton transfer pathways in the quinol:fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol:fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/proton-transfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme b_L in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structural insights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-

    Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas

    Get PDF
    The membrane-embedded quinol: fumarate reductase (QFR) in anaerobic bacteria catalyzes the reduction of fumarate to succinate by quinol in the anaerobic respiratory chain. The electron/protontransfer pathways in QFRs remain controversial. Here we report the crystal structure of QFR from the anaerobic sulphate-reducing bacterium Desulfovibrio gigas (D. gigas) at 3.6 Å resolution. The structure of the D. gigas QFR is a homo-dimer, each protomer comprising two hydrophilic subunits, A and B, and one transmembrane subunit C, together with six redox cofactors including two b-hemes. One menaquinone molecule is bound near heme bL in the hydrophobic subunit C. This location of the menaquinone-binding site differs from the menaquinol-binding cavity proposed previously for QFR from Wolinella succinogenes. The observed bound menaquinone might serve as an additional redox cofactor to mediate the proton-coupled electron transport across the membrane. Armed with these structuralinsights, we propose electron/proton-transfer pathways in the quinol reduction of fumarate to succinate in the D. gigas QFR.Guan, H., Hsieh, Y., Lin, P. et al. Structural insights into the electron/proton transfer pathways in the quinol : fumarate reductase from Desulfovibrio gigas. Sci Rep 8, 14935 (2018) doi:10.1038/s41598-018-33193-
    corecore