313 research outputs found

    Environmental Economic Hydrothermal System Dispatch by Using a Novel Differential Evolution

    Get PDF
    This paper proposes the Novel Differential Evolution (NDE) method for solving the environmental economic hydrothermal system dispatch (EEHTSD) problem with the aim to reduce electricity generation fuel costs and emissions of thermal units. The EEHTSD problem is constrained by limitations on generations, active power balance, and amount of available water. NDE applies two modified techniques. The first one is modified mutation, which is used to balance global and local search. The second one is modified selection, which is used to keep the best solutions. When performing this modified selection, the proposed method completely reduces the impact of crossover by setting it to one. Moreover, the task of tuning this factor can be canceled. Original Differential Evolution (ODE), ODE with the first modification (MMDE), and ODE with the second modification (MSDE), and NDE were tested on two different hydrothermal systems for comparison and evaluation purposes. The performance of NDE was also compared to existing methods. It was indicated that the proposed NDE is a very promising method for solving the EEHTSD problem

    Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station

    Get PDF
    The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance.  

    Optimal Design of V-Shaped Fin Heat Sink for Active Antenna Unit of 5G Base Station

    Get PDF
    The active antenna unit (AAU) is one of the main parts of the 5G base station, which has a large size and a high density of chipsets, and operates at a significantly high temperature. This systematic study presents an optimal design for the heat sink of an AAU with a V-shaped fin arrangement. First, a simulation of the heat dissipation was conducted on two designs of the heat sink – in-line and V-shaped fins – which was validated by experimental results. The result shows that the heat sink with V-shaped fins performed better compared to conventional models such as heat sinks with in-line fins. Secondly, computational fluid dynamics (CFD) and the Lagrange interpolation method were applied to find out an optimal set of design parameters for the heat sink. It is worth noting that the optimal parameters of the orientation angle and fin spacing considerably affected the heat sink’s performance.  

    Study on outage performance gap of two destinations on CR-NOMA network

    Get PDF
    Non-orthogonal multiple access (NOMA) and cognitive radio (CR) are promising for solving the severe spectral scarcity problem encountered by the next generation of wireless communication systems. This study aims to improve spectral efficiency at two secondary destinations by investigating a CR-NOMA network under situation of the perfect successive interference cancellation (SIC). We also derive the exact outage probability for secondary users. Furthermore, an approximate computation method is applied to indicate more insights. It is confirmed that the performance achieved together with performance gap among two users can be obtained due to different power allocation factors assigned to users

    Multiobjective Logistics Optimization for Automated ATM Cash Replenishment Process

    Full text link
    In the digital transformation era, integrating digital technology into every aspect of banking operations improves process automation, cost efficiency, and service level improvement. Although logistics for ATM cash is a crucial task that impacts operating costs and consumer satisfaction, there has been little effort to enhance it. Specifically, in Vietnam, with a market of more than 20,000 ATMs nationally, research and technological solutions that can resolve this issue remain scarce. In this paper, we generalized the vehicle routing problem for ATM cash replenishment, suggested a mathematical model and then offered a tool to evaluate various situations. When being evaluated on the simulated dataset, our proposed model and method produced encouraging results with the benefits of cutting ATM cash operating costs

    Crack growth modelling: enriched continuum vs. discrete models

    Get PDF
    Failure in quasi-brittle materials usually appears in the form of narrow bands called fracture process zones, where all inelastic deformation takes place, while the surrounding bulk material outside those areas typically unloads elastically. This localised nature of failure is the main source of size effects in these materials, since the width of the fracture process zone is a material property that does not scale with the size of the material volume. An adequate description of localised failure and associated size effects requires both size and behaviour of the fracture process zone and neighbouring material to be properly taken into account. In this study, we present two alternative approaches for modelling localised failure and simulating fracture propagation using finite element methods. In the first approach, an embedded crack appears at a constitutive level by enriching the kinematics of constitutive models, while in the second one this is done at the finite element level using cohesive interface elements. The advantages and shortcomings of both are presented through one numerical example on the failure of fibre-reinforced composite materials

    Mixed regime in a quasi-linear system

    Get PDF
    A quasi-linear system with cubic nonlinearity under two external excitations in sub harmonic responses of order 1/2 and 1/3 was examined. In the system under consideration there appears mixed oscillation due to the interaction between derived excitations. Various forms of the resonance curve were identified. The stability study was based on an abbreviated form of the second stability condition [2]

    Interaction between linear and cubic parametric excitations

    Get PDF
    Non
    • …
    corecore