229 research outputs found

    Studies on Old World Bluestems III

    Get PDF
    The Oklahoma Agricultural Experiment Station periodically issues revisions to its publications. The most current edition is made available. For access to an earlier edition, if available for this title, please contact the Oklahoma State University Library Archives by email at [email protected] or by phone at 405-744-6311

    A pilot phase Ib study to evaluate tadalafil to overcome immunosuppression during chemoradiotherapy for IDH-wild-type glioblastoma

    Get PDF
    BACKGROUND: Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. METHODS: Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. RESULTS: Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, CONCLUSIONS: Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation

    Accurate and Interpretable Machine Learning for Transparent Pricing of Health Insurance Plans

    Full text link
    Health insurance companies cover half of the United States population through commercial employer-sponsored health plans and pay 1.2 trillion US dollars every year to cover medical expenses for their members. The actuary and underwriter roles at a health insurance company serve to assess which risks to take on and how to price those risks to ensure profitability of the organization. While Bayesian hierarchical models are the current standard in the industry to estimate risk, interest in machine learning as a way to improve upon these existing methods is increasing. Lumiata, a healthcare analytics company, ran a study with a large health insurance company in the United States. We evaluated the ability of machine learning models to predict the per member per month cost of employer groups in their next renewal period, especially those groups who will cost less than 95\% of what an actuarial model predicts (groups with "concession opportunities"). We developed a sequence of two models, an individual patient-level and an employer-group-level model, to predict the annual per member per month allowed amount for employer groups, based on a population of 14 million patients. Our models performed 20\% better than the insurance carrier's existing pricing model, and identified 84\% of the concession opportunities. This study demonstrates the application of a machine learning system to compute an accurate and fair price for health insurance products and analyzes how explainable machine learning models can exceed actuarial models' predictive accuracy while maintaining interpretability.Comment: Accepted for publication in The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), in the Innovative Applications of Artificial Intelligence track. This is the extended version with some stylistic fixes from the first posting and complete author lis

    Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry

    Get PDF
    Most patients with glioblastoma (GBM) die within 2 years. A major therapeutic goal is to target GBM stem cells (GSCs), a subpopulation of cells that contribute to treatment resistance and recurrence. Since their discovery in 2003, GSCs have been isolated using single-surface markers, such as CD15, CD44, CD133, and α6 integrin. It remains unknown how these single-surface marker-defined GSC populations compare with each other in terms of signaling and function and whether expression of different combinations of these markers is associated with different functional capacity. Using mass cytometry and fresh operating room specimens, we found 15 distinct GSC subpopulations in patients, and they differed in their MEK/ERK, WNT, and AKT pathway activation status. Once in culture, some subpopulations were lost and previously undetectable ones materialized. GSCs that highly expressed all 4 surface markers had the greatest self-renewal capacity, WNT inhibitor sensitivity, and in vivo tumorigenicity. This work highlights the potential signaling and phenotypic diversity of GSCs. Larger patient sample sizes and antibody panels are required to confirm these findings

    A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma

    Get PDF
    BACKGROUND: The blood-brain barrier (BBB) is a major limiting factor for drug delivery in brain tumors. Laser interstitial thermal therapy (LITT) disrupts the peritumoral BBB. In this study, we examine survival in patients with recurrent glioblastoma (GBM) treated with LITT followed by low-dose doxorubicin, a potent anti-neoplastic drug with poor BBB permeability. METHODS: Forty-one patients with recurrent GBM were enrolled; thirty patients were evaluable. Participants underwent LITT followed by 6 weekly doxorubicin treatments starting within one week (Early Arm) or at 6-8 weeks (Late Arm) after LITT. The overall survival (OS), local progression-free survival (PFS), and any PFS were compared to historical controls treated with bevacizumab salvage therapy ( RESULTS: The Late Arm and all patients (Early Arm + Late Arm) demonstrated significant improvement in OS compared to historical controls treated with bevacizumab ( CONCLUSIONS: Low-dose doxorubicin given after LITT is well tolerated and correlated with higher OS compared to historical controls treated with bevacizumab or LITT with standard salvage chemotherapy. A larger study is needed to further characterize survival and progression patterns

    Putative role of the adenosine A3 receptor in the antiproliferative action of N6-(2-isopentenyl)adenosine

    Get PDF
    We tested a panel of naturally occurring nucleosides for their affinity towards adenosine receptors. Both N6-(2-isopentenyl)adenosine (IPA) and racemic zeatin riboside were shown to be selective human adenosine A3 receptor (hA3R) ligands with affinities in the high nanomolar range (Ki values of 159 and 649 nM, respectively). These values were comparable to the observed Ki value of adenosine on hA3R, which was 847 nM in the same radioligand binding assay. IPA also bound with micromolar affinity to the rat A3R. In a functional assay in Chinese hamster ovary cells transfected with hA3R, IPA and zeatin riboside inhibited forskolin-induced cAMP formation at micromolar potencies. The effect of IPA could be blocked by the A3R antagonist VUF5574. Both IPA and reference A3R agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide (Cl-IB-MECA) have known antitumor effects. We demonstrated strong and highly similar antiproliferative effects of IPA and Cl-IB-MECA on human and rat tumor cell lines LNCaP and N1S1. Importantly, the antiproliferative effect of low concentrations of IPA on LNCaP cells could be fully blocked by the selective A3R antagonist MRS1523. At higher concentrations, IPA appeared to inhibit cell growth by an A3R-independent mechanism, as was previously reported for other A3R agonists. We used HPLC to investigate the presence of endogenous IPA in rat muscle tissue, but we could not detect the compound. In conclusion, the antiproliferative effects of the naturally occurring nucleoside IPA are at least in part mediated by the A3R

    A Model for Interprofessional Health Disparities Education: Student-Led Curriculum on Chronic Hepatitis B Infection

    Get PDF
    Although health disparities are commonly addressed in preclinical didactic curricula, direct patient care activities with affected communities are more limited. To address this problem, health professional students designed a preclinical service-learning curriculum on hepatitis B viral (HBV) infection, a major health disparity affecting the Asian/Pacific Islander (API) population, integrating lectures, skills training, and direct patient care at student-run clinics. An urban health professions campus. Medical and other health professional students at University of California, San Francisco, organized a preclinical didactic and experiential elective, and established two monthly clinics offering HBV screening, vaccination, and education to the community. Between 2004 and 2009, 477 students enrolled in the student-led HBV curriculum. Since the clinics’ inception in 2007, 804 patients have been screened for chronic HBV; 87% were API immigrants, 63% had limited English proficiency, and 46% were uninsured. Serologically, 10% were found to be chronic HBV carriers, 44% were susceptible to HBV, and 46% were immune. Our student-led didactic and experiential elective can serve as an interprofessional curricular model for learning about specific health disparities while providing important services to the local community

    Microbial degradation of furanic compounds: biochemistry, genetics, and impact

    Get PDF
    Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid
    • …
    corecore