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Chromatin accessibility is essential in regulating gene expression and cellular identity,
and alterationsin accessibility have been implicated in driving cancer initiation,
progression and metastasis'™. Although the genetic contributions to oncogenic
transitions have been investigated, epigenetic drivers remain less understood. Here
we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus
chromatin accessibility data (using single-nucleus assay for transposase-accessible
chromatin) from 225 samples and matched single-cell or single-nucleus RNA-
sequencing expression data from 206 samples. With over 1 million cells from each
platform analysed through the enrichment of accessible chromatin regions,
transcription factor motifs and regulons, we identified epigenetic drivers associated
with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for
example, regulatory regions of ABCCI and VEGFA; GATA6 and FOX-family motifs),
whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2
and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia
and TNF signalling were linked to cancer initiation, whereas oestrogen response,
epithelial-mesenchymal transition and apical junction were tied to metastatic
transition. Furthermore, we revealed a marked correlation between enhancer
accessibility and gene expression and uncovered cooperation between epigenetic
and genetic drivers. This atlas provides a foundation for further investigation of
epigenetic dynamics in cancer transitions.

The spatiotemporal dynamics of chromatin decondensation and sub-
sequent binding of transcriptional machinery' has an important but
incompletely understoodrole in pathogenic transitions in cancer, such
asinitiation, progression and metastasis® Epigenetic regulation affects
gene expression, lineage determination, cell-cell interactions and ther-
apeuticresistance. In contrast to genetic drivers, such as somatic muta-
tions, epigenetic drivers are less well defined®. However, they might be
identified by an enrichment type of analysis, similar to how driver genes
are found. Understanding their interactions with genetic and envi-
ronmental factors is also crucial. An interaction was recently demon-
strated*involving KRAS mutation and tissue damage in the pancreatic

epithelium that remodels chromatin, producing cancer-favouring
transcriptional activity. Here we consider epigenetic drivers to be the
activity of regulatory elements or transcription factors (TFs) associ-
ated with cancer initiation, progression and metastasis, often through
interactions with genetic drivers. It is possible that such epigenetic
drivers may explain previously unknown tumorigenic mechanisms.
The assay for transposase-accessible chromatin using sequencing
(ATAC-seq) is arapid and sensitive method for profiling the epigenome®.
Previous studies have obtained ATAC-seq results for some cancers®’ at
thebulklevelas averages across different cell types within atumour. The
recent development of single-nucleus ATAC-seq (snATAC-seq) provides
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afar greater resolution to examine single-cell epigenomes®®. Coupling
SnATAC-seq with single-nucleus RNA sequencing (snRNA-seq) permits
simultaneous profiling of the epigenome and transcriptome in the
same individual cells, enabling direct analysis of associations between
chromatin accessibility and gene transcription. We constructed an
integrative multi-omic atlas of 11 major cancer types procured from
over 200 patient cases. The large number of samples and considerable
representation of cancer types and statuses (for example, normal, pri-
mary and metastatic) furnish awell-powered cohort for investigating
epigenetic driversin cancer.

We provide a unified map of lineage-specific and cancer-specific
cell populations, differentially accessible enhancers and promoters,
epigenetically regulated cancer-associated genes and TFs that are
important across major cancer transitions. Although some of these
drivers and transcriptional programs are associated with transitions
in multiple cancer types, others show high cancer-type specificity.
We found that correlations between epigenetic changes and genetic
mutations within the same pathway are present across cancer types,
suggesting numerous instances of cooperation in cancer transition
programs. This study highlights the potential of TFs as prognostic
markers, offering adeeper understanding of the molecular underpin-
nings driving cancer evolution.

Chromatin accessibility across cancers

As part of the NCIHuman Tumour Atlas Network (HTAN), we procured
225samples from158 primary and 52 metastatic tumour samples and 15
normal adjacent tissues (NATs) from 201 patients across 11 cancer types
(Fig.1a,b, Extended DataFigs.1and 2 and Supplementary Table 1a,b).
This set contains 52 metastatic samples from colorectal cancer (CRC),
pancreatic ductaladenocarcinoma (PDAC), skin cutaneous melanoma
(SKCM), uterine corpus endometrial carcinoma (UCEC), ovarian cancer
(OV)andbreast cancer (BRCA), including paired primary and metastatic
samples of five cases of UCEC and four cases of CRC. We performed
snATAC-seq analysis of all 225 samples, along with paired single-cell or
single-nucleus RNA-seq (sc/snRNA-seq) for 206 of these samples (Sup-
plementary Table 1a). Among those, 14 scRNA-seq multiple myeloma
(MM) samples, 10 snRNA-seq PDAC samples, 14 snRNA-seq glioblastoma
(GBM) samples, and 28 snATAC-seq and 27 snRNA-seq clear-cell renal
cell carcinoma (ccRCC) samples were obtained from previous stud-
ies'® 3, with many of the ccRCC and GBM samples originating from
the NCI Clinical Proteomic Tumour Analysis Consortium (CPTAC).
Bulk whole-exome sequencing (WES) data were also generated for 195
samples (Supplementary Table1a). These multi-omic datasets enable
the systematic discernment of cell subpopulations in diverse cancer
types and tracing of cancer transitions from normal precursor to pri-
mary tumour to metastasis.

The snATAC-seq data encompassed 1,019,175 nuclei from the 225
samples (mean nuclei per sample, 4,530) (Fig. 1b and Extended Data
Fig. 1b). We identified accessible chromatin regions (ACRs) across all
samples, averaging 126,196 ACRs per sample, with most appearing in
intronic (49%), distal intergenic (30.8%) and promoter (8.6%) regions,
asexpected (Supplementary Table1c,d and Supplementary Note1). We
also performed sc/snRNA-seq analysis of 206 samples, with snRNA-seq
and snATAC-seq data generated from the same cells in 129 instances
(snMultiome-seq samples; Extended Data Fig. 1a). The combined sc/
snRNA-seq datayielded 1,157,955 cells or nuclei, which were annotated
by the expression of curated epithelial, immune and stromal marker
genes (Extended Data Fig. 1c, Supplementary Note 2 and Supplemen-
tary Tablele).sc/snRNA-seq cell annotation was further used to anno-
tate the snATAC-seq dataset. Intotal, 250,222 immune, 69,684 stromal,
69,506 normal epithelial and 588,895 cancer cells were detected (Fig. 1b
and Extended Data Fig. 1b).

We identified 56,001 tissue- and cancer-cell-specific differentially
accessible chromatin regions (DACRs) by comparing each cancer type

to all others (Extended Data Fig. 2g, Supplementary Table 2a-c and
Supplementary Note 3). Many of these DACRs include the promoters
of tissue-specific genes, such as keratin genes in squamous cancers,
PAX8in OV and UCEC, GATA3 in non-basal BRCA, PTPRZI in GBM and
PAX3in SKCM (Extended Data Fig. 2g). Dimensionality reduction of
chromatin accessibility inmalignant cells at the sample level (Extended
Data Fig. 3a) revealed the expected similarity between cancer types
that reflect their primary tissue of origin. Specifically, head and neck
squamous cell carcinoma (HNSCC) and cervical squamous cell car-
cinoma (CESC) were co-clustered, whereas non-squamous cervical
samples were clustered with epithelial cancer types, further supported
by high expression of adenocarcinoma markers (therefore annotated
as CEAD) (Extended DataFig. 3b). We also found that one PDAC meta-
static sample had high expression of squamous markers, but lacked
adenocarcinomamarkers, explaining its co-clustering with other squa-
mous cancers (Extended DataFig.3a). We also observed that UCEC and
OV clustered together, whereas basal BRCA was distinctly separated
fromnon-basal BRCA, indicating significant differences between these
subtypes. These were subsequently treated as separate cancer types
here. One example of a squamous-tissue-specific ACR shared by the
squamous cancers HNSCC and CESC was the KRT6A promoter region
(Extended Data Fig. 3¢ (left)). KRT6A encodes keratin 6A, which is an
important biomarker of the squamous lineage™. The similarity between
OV and UCEC cancer cells was exemplified by shared accessibility of
the PAX8 promoter (Extended Data Fig. 3¢ (right)), which s consistent
with its known association with these cancers™'.

Chromatinregions altered in tumours

We sought to define the genetic and epigenetic changes underpinning
the transition from normal cells to cancer cells. By correlating cancer
cells and normal cells on the basis of chromatin accessibility (Fig. 1c)
and gene expression (Extended Data Fig. 4a), we defined the following
normal cell populations as the closest normal cells (CNCs): luminal
mature cells for BRCA of the non-basal subtypes; luminal progenitor
cells for BRCA of the basal subtype; ductal-like-2 cells for PDAC; distal
stem cells for CRC; secretory endometrial epithelial cells for UCEC
and OV; normal squamous cells for HNSCC and CESC; melanocytes for
SKCM; proximal tubule cells for ccRCC; and oligodendrocyte precur-
sor cells (OPCs) for GBM. The CNCs that we identified in this manner
are consistent with those identified in previous studies (Methods and
Supplementary Table 2d). For MM, we used normal B cells as the CNCY.

We used these CNCs to remove tissue-specific signals and identify
cancer-cell-specific changes in chromatin accessibility shared by sev-
eral cancer types. By comparing cancer cells with their respective CNCs,
we found 22,187 (Fig. 1d) and 29,074 (Extended Data Fig. 4b) respec-
tive regions of increased and decreased accessibility in cancer cells
and mapped them to their nearest respective genes based on DACR
proximity to the closest transcription start sites (TSS) (Supplementary
Table 2e,f). Intotal, 53% of DACRs were found in enhancer regions and
37% in promoter regions, suggesting that their functional relevance
to gene expression changes (Extended Data Fig. 4c). Indeed, across
cancers, around 75% of DACRs matched the direction of the expression
change of the nearest gene (Extended Data Fig. 4d). Furthermore, we
performed acorrelation analysis between DACRs and the nearest gene
expression and observed significant positive correlation in all can-
cers, withtherho values ranging from 0.25 (BRCA, basal) to 0.5 (PDAC)
(Extended DataFig. 4e).Several genes showed pan-cancer patterns of
increased accessibility of nearby genomic regions (Fig. 1d), including
solute carrier family member SLC38A8, AP1 family TF MAFA and the
prognostic biomarker in several cancers, class lll B-tubulin (TUBB3)8.
Cancer-type-specific DACRs included HOX TF HOXA4in GBM, an unfa-
vourable prognostic factoringlioma®, the clinically significant marker
FGF19in BRCA (of non-basal subtypes)® and hypoxia-inducible factor
3 EGLN3, aknown pathological marker of ccRCC?.
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Fig.1|Chromatinaccessibility patterns across 11 cancertypes.a, Schematic
ofthe datageneration and study design, showing the cancer types and sample
typescollected, the building, annotation and integration of the atlas, and the
biological entities that were investigated. b, Uniform manifold approximation
and projection (UMAP) plot of anintegrated pan-cancer snATAC-seq object
showing the distribution 0f250,222 immune, 69,684 stromal, 69,506 normal
epithelialand 588,895 cancer cellsacross 225samples. A detailed breakdown
of 36 different celltypesis shownin Extended DataFigs.1band2a,b.c, The
Pearson’s correlation coefficients between cancer cells from each tumour and
normal cell types of the tumour’s tissue of origin. Cell types are ordered by
increasing median correlation coefficient per cohort; the right-most cell type

We further identified hallmark pathways enriched in cancer-cell-
specific DACRs (Extended Data Fig. 4f). Large numbers of DACRs
marked genes downregulated in response to ultraviolet radiationin 5
out of 7 cancer types. Among these are collagen genes, growth factor
receptors and MAPK/ERK kinases. The hypoxia pathway was enriched in
¢cRCC,BRCA, PDAC and UCEC, as was TNF signallingin ccRCC, CRC, MM

434 | Nature | Vol 623 | 9 November 2023

was considered the CNCand was subsequently used as areference for identifying
cancer-associated epigeneticdrivers. d, The top cancer-cell-associated DACRs
identified by comparing cancer cells versus the CNCs. The bubble size shows
the percentage of cancer cells with accessible DACRs and the colour conveys
thelog,[FC]. Thexaxis shows the nearest gene of each DACR. Genes are grouped
by those shared between cancers and those specificto cancer types. Cancer-
specific DACRs were selected on the basis of specificity and by fold change (FC)
ineach cancer type (columns), or ifthey were shared by the maximal number of
cancers (shared). Positive log,[FC]is shown if ACRwas accessible in >5% of
cancer cells. DACRs of genes that overlap promoters and enhancers from the
EpiMap database are highlighted in bold.

and PDAC. Although VHL mutation drives hypoxiain ccRCC?, hypoxia
enrichmentin other cancers cannot be explained solely by mutations,
suggesting that epigenetic dysregulationis a driver. Two DACRs were
especially notable (Extended Data Fig. 4g). Enhancer accessibility of
ABCCI was increased in ccRCC, GBM and UCEC, exemplifying genes
downregulated in response to ultraviolet radiation. ABCCI encodes



multidrug-resistance protein-1(MRP1) and promotes tumour growth
through drugeffluxin neuroblastoma cells?* and lipid-signalling path-
ways in uterine leiomyoma cells*. Another example shows increased
accessibility of the enhancer of VEGFA, aknown pro-angiogenic factor?,
inccRCC, CRC and UCEC.

ACR-to-gene links in tumour progression

Thelarge number of malignant nuclei sequenced using snMultiome-
seq in 122 tumour samples from 8 cancer types and measurements
of over half amillion enhancer ACRs enabled us to predict enhancer
ACRs regulating gene expression. First, we evaluated whether our
dataset shows any global association patterns between accessibility
of enhancer and promoter ACRs and gene expression. By correlating
malignant and normal epithelial cells using accessibility and gene
expression, we found that the accessibilities of enhancer elements
were more specific to cancer types and tissue of origin than the acces-
sibilities of promoters (Fig. 2a), consistent with other studies®?.
Enhancer accessibility also better reflected transcript expression than
promoter accessibility did, suggesting their crucial role inregulating
gene expression. To predict regulatory relationships between ACRs
and gene expression, we computed correlation-based ACR-to-gene
links (Methods). Nearly half of all significant ACR-to-gene links were
between genes and EpiMap enhancer regions (Fig. 2b) and most of
those enhancer ACR-to-gene links were cancer-type specific (Fig. 2c),
supporting the tissue and cancer-type specificity of enhancers demon-
strated in Fig. 2a. Only amodest fraction (25-35%) of the ACR-to-gene
links was previously reported inthe GeneHancer Interactions database
(Extended Data Fig. 5a and Supplementary Table 3), indicating that
the majority of the links that we identified in this study are previously
undescribed.

We next sought to identify which linked ACRs and genes might be
related to transition from normal to primary cancer cells. For eachlink,
we required that both the ACR and the gene were a respective DACR
and adifferentially expressed gene (DEG; log,[fold change (FC)] > 0.25
and false-discovery-rate-adjusted P (FDR) < 0.05). We observed 397
linked ACRs (most of which are enhancers) gaining accessibility in most
primary PDAC tumours (Fig. 2d). One proximal and two distal enhanc-
ersin particular were linked to the expression of recently reported
oncogenic ASAP2in PDAC¥ (Fig. 2d and Extended Data Fig. 5b), while
the accessibility of its promoter did not change (Extended Data Fig. 5b).
ASAP2encodes a GTPase-activating protein that activatesthe GTPases
ARF1, ARF5and ARF6*%, influencing the dynamics of focal adhesions®.
It also was shown to promote proliferation of PDAC and HCC cancer
cells?*°, Expression of ASAP2 was a similarly unfavourable prognostic
factor in the TCGA PDAC cohort (Extended Data Fig. 5c).

Other notable examples of ACR-to-gene linksinclude TF genes KLF6
and PPARG, linked respectively to one and two enhancers that gain
accessibility in PDAC cancer cells (Fig. 2d and Extended Data Fig. 5d).
PPARG expression in pancreatic cancer is associated with worse sur-
vival’'and its knockout in pancreatic cancer cell lines leads to decreased
cell proliferation® (Extended Data Fig. 5e). Another unfavourable prog-
nostic marker of PDAC, FLNB, was linked to five enhancer regions, sug-
gesting extensive epigenetic regulation (Extended Data Fig. 5f).Inthe
basal BRCA cohort, we observed several enhancers linked to the genes
ENI, VIM and VEGFA (Extended DataFig. 5g-i). Theregionbetween 10 kb
upstream and 20 kb downstream of the ENI gained high accessibility
compared with the CNC (Extended Data Fig. 5i), suggesting substantial
epigeneticregulation of ENI expression. EN1is a developmental TF that
was showntobeatranscriptional dependency of triple-negative BRCA,
promoting the survival of basal-like breast and other cancers®?*. As
opposed to more proximal enhancers of VEGFA that gainaccessibility in
ccRCC, CRCand UCEC cancers (Extended DataFig.4g), distal upstream
and downstream enhancers were upregulated in BRCA basal cancer
(Extended DataFig. 5h). These observations demonstrate the strength

of ACR-to-gene analysis to identify potential regulatory relationships
between distal elements and clinically relevant genes.

Regulons in primary tumours

To better understand transcriptional regulations involved in cancer
development, we sought to define TF target genes that underlie cell
state. We used SCENIC* to identify regulatory relationships between
TFs and their target genes, namely the regulon, in each cancer cohort
(Methods and Extended Data Fig. 6a). This analysis revealed 258 regu-
lons with concordant gene expression between TFs and their targets
(Supplementary Table 4a), each one containing between 20 and 4,310
target genes (median, 372). Of these, 87 regulons showed high specific-
ity for certain cancer types (Fig. 3a and Supplementary Table 4b-e).
Among those, we observed 41 regulons were tissue specific (shared
between cancer cells and the CNCs) and 46 regulons were cancer cell
specific (more active in cancer cells compared with in the CNCs; Sup-
plementary Table 4c,e). Examples of tissue-specific regulons include
FOXAland GATA3 in BRCA non-basal cancer, KLF4 and FOSL1in CESC
and HNSCC, HNF1A and KLF9in ccRCC, and HNF4G and GATA6 in CRC
and PDAC.

When compared to CNCs, several regulons showed enhanced activ-
ity in malignant cells (Fig. 3a and Supplementary Table 4c), including
MYBL1in BRCAbasal, OVand UCEC; TP73in CESCand HNSCC; KLF6in
PDAC and ccRCC (Fig.3b); and NRF1in PDAC, GBM and SKCM (Fig. 3b).
The accessibilities of the KLF6 and NRF1 motifs were also increased in
these cancers (Fig.3b), further supporting enhanced activity of these
TFs. Pancreatic cancer cells also showed enhanced activity of several
PDAC-specificregulons, including PPARG, KLF3, FOXL1, MAFK and GLI2
(Fig.3a,band Extended DataFig. 6b), and several regulons shared with
squamous cells, such as TP63, FOSL1 and ELK3 (Fig. 3a and Extended
DataFig. 6¢). Most of these TFs also had increased motif accessibility
(Extended Data Fig. 6b,c and Supplementary Table 4d,e). Moreover,
several regulons showed decreased activity in primary cancer cells,
including GATA6, which is significantly reduced in UCEC, OV, PDAC
and CRC (Extended DataFig. 6d).

We used various methods to further support the regulons that we
prioritized (Supplementary Table 5 and Supplementary Note 4). We
found that target genes of cancer-cell-specific regulons were enriched
with cancer-specific pathways (Extended Data Fig. 6e), indicating their
involvement in cancer-related processes. We also showed that target
genes of 21 TFs were more likely to be linked to ACRs containing bind-
ing motifs of these TFs than random genes (Fig. 3¢c,d), validating the
connections among target gene expression, ACR accessibility and TF
activity. We next validated the target genes for each TF using TF-specific
chromatinimmunoprecipitation followed by sequencing (ChIP-seq)
data from ENCODE?, corroborating direct binding to target genesin
51out of 53 TFs that we examined (Extended Data Fig. 7a and Supple-
mentary Table 5b,c). Our findings were further supported by a centred
distribution of ChIP-seq peaks around the TSSs of target genes, indi-
cating regulation of the target genes by the TFs (Fig. 3e and Extended
DataFig. 7b,c). These analyses not only confirm some of our findings,
but also highlight the power of discovering new events with a larger
pan-cancer cohort. To further validate our results, we performed a
cleavage under targets and release using nuclease (CUT&RUN) assay in
the U251 GBM cell line (Fig. 3e and Extended DataFig. 7c), profiling the
direct binding of NRF1at the promoters of target genes. We observed
a consistent pattern of binding across many different target genes,
providing further evidence to support our findings.

Epigenetic programs in cancer metastasis

Our cohortincluded 52 metastatic samples from 6 tumour types: SKCM
(16), CRC (15), PDAC (13), UCEC (5), OV (2) and BRCA (1). Among those,
we had 9 cases (5 UCEC and 4 CRC) with paired primary-metastatic
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Fig.2| CREsregulating transcriptional programsin cancer.a, Sample-wise
Pearson’s correlations of cancer cells and normal cells from the same tissue
(snMultiome-seq samples) computed based on the accessibility of ACRs
overlapping EpiMap enhancer regions (left), ACRs overlapping EpiMap
promoter regions (centre) and RNA transcripts (right). The left heat map was
clustered using asingle-linkage clustering method and Euclidean distance,
andthe centre and the right heat maps follow the same order. b, The counts of
ACR-to-genelinks by cancer type and coloured by EpiMap annotation of ACRs.
¢, AnUpSet plot showing that most enhancer-to-gene links are cancer-type
specific. The connected dots at the bottom right indicate ACR-to-gene links
shared between the cancer types denoted.d, The accessibility of ACRs (top)
thatarelinked to gene expression (bottom) in PDAC cancer cells. The heat

samples, enabling us to directly evaluate the epigenetic changes that
lead to metastasis in individual cases.

We first analysed transcriptional programs involved in metasta-
sis using the four cohorts for which we had at least five metastasis
samples, namely SKCM, CRC, PDAC and UCEC. We compared cancer
cells from primary tumour samples and metastasis samples for each
cohort, finding severalimportant prognostic markers (Extended Data
Fig. 8a and Supplementary Table 6a-c). LAMAS regulatory regions
were upregulated across CRC liver metastasis samples, consistent
with LAMAS promoting colorectal liver metastasis growth®. GNA13
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maps show the average normalized and scaled snATAC-seq and snRNA-seq
values aggregated by sample for cancer cells and by cell type for normal
pancreascells. The top heat map was clustered using Ward’s minimum-variance
method (Ward.D2 fromR) and Euclidean distance. The bottom heat map
columnsand rows follow the order of the top heat map. Acinar, acinar cells;
acinar REG", acinar cells with high expression of regenerating proteins; ADM,
acinar-to-ductal metaplasia; dELS, distal cis-regulatory regions (CREs) with
enhancer-like signatures; ductal-like-1, ductal cells with high SPP1and CRP;
ductal-like-2, ductal cells withincreased mucus genes and trefoil factor genes;
islets, allislets of Langerhans cells; pELS, proximal CREs with enhancer-like
signatures; PLS, CREs with promoter-like signatures.

regulatory regions were upregulated in metastatic SKCM; GNA13 is
associated with proliferation and metastasis in several tumour types,
but its specific role in melanomaiis less understood**.

Toidentify TFsthat change their activity during the transition from
primary to metastasis, we compared TF motif accessibility scores
(Methods) between primary and metastatic cells across four cancers
(SKCM, CRC, PDAC and UCEC). For CRC, we observed several TF motifs
with consistently higher accessibilities in metastatic cells versus pri-
mary cancer cells, including the epithelial to mesenchymal transition
(EMT) master regulator TWIST1*’, and PBX3, which promotes migration
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coloured by cancer type, and the green boxes represent normal cells.

of CRC cells*! (Fig. 4a and Supplementary Table 6d-f). In PDAC, we
found ELF3 and GATA6 among the top significant TFs with decreased
motifaccessibilities. ELF3is associated with the epithelial phenotype
andrepresses EMT*, and it was also identified as a tissue-specific regu-
loninourdata (Fig.3a). GATA6 regulates EMT and inhibits EMT in vitro
and cell disseminationin vivo in pancreatic cancer*. GRHL1was one of
the top TFs with decreased motifaccessibility in metastasis compared
with in the primary tumour in UCEC and induces epithelial cell adhe-
sionmolecules and represses genes that areinvolved in cell migration

FDR-adjusted Wilcoxon two-sided Pvalues are shown (Supplementary

Table 4c,e). For the box plots, the centre line shows the median, the box limits
show the firstand third quartiles, the upper and lower whiskers extend from
thehinge tothelargestorthe lowest value no further than1.5x theinterquartile
range (IQR) from the hinge. ¢, TFs of which the target genes are enriched for
TF-specific ACR-to-gene links (ACR containing this TF-binding site). Colour
indicatesthelog,[FC] betweenthe observed number of target genes with
suchlinks over the expected number (K, __,) ofrandom genes with such links.
One-sided Pvalues were calculated for each regulon from a Gaussian zscore,
z=(M-p)/o,where Misthe observed number of target geneslinked to TF
motifs. d, Example of the normal distribution of the number of genes with
PPARG-specific PDAC ACR-to-gene links found in randomly sampled genes.
The observed number of PPARG target genes with PPARG-specific ACR-to-gene
linksisindicated by the redline. e, The presence of ChIP-seq peaks (ENCODE),
snATAC-seq peaks or CUT&RUN peaks around the TSS of target genes.

and invasion**. We also observed multiple members of FOX-family
TFs among the most significant downregulated TFs across cancers.
FOX-family motifs were also enriched in DACRs that were upregulated
inprimary PDAC and UCEC (Supplementary Note 4). FOXAl represses
genesassociated with EMT* and FOXN3 represses growth and invasion
insome cancers*®*. These results support theidea thatboth common
andspecific TFsareinvolved in the process of metastasis across differ-
entcancers. Next, we used the genetically engineered mouse models of
PDAC driven by Kras®?” mutation and TrpS3loss (p48-cre;LSL-Kras®?";
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cell percentage was higherin primary PDAC compared withinmatched metastatic ~ showing cells ordered along the trajectories identified by Slingshot (centre),
(met.) PDAC. n = 6. Pvalues calculated using two-sided paired t-testsareshown.  andscatter plots showing the association between PBX3 (e) or SNAI1 (f) motif
For thebox plots, the centre line shows the median, the box limitsshow the first  accessibility and the progression of pseudotime (right) are shown.

Trp53™) to validate decreasing activity of GATA6 in PDAC metastases.  four cohorts, and found that development-related pathways—such as
Specifically, we performed multipleximmunohistochemistry (mpIHC)  EMT, myogenesis and apical junction—were significantin three cohorts.
analysis of GATA6 and cytokeratin 19 (acancer cellmarker)inmatched  Thisobservationis consistent with the fact that theloss of the epithelial
primary tumours and metastases in liver tissues. Consistent withobser-  phenotypeisanimportant process involved in metastasis (Fig. 4d). We
vations from human snATAC-seq data analysis, we found fewer GATA6®  also observed pathways that were enriched specifically in individual
and GATA6"e" PDAC cancer cellsinallliver metastases compared with  cohorts, for example, TNF signalling was significant in PDAC, consistent
in their matched primary pancreatic tumours (Fig. 4b,c; paired t-test, ~ with the known KRAS-induced NF-kB activation in PDAC*,
P=0.066 and P=0.057, respectively). Finally, we analysed snATAC-seq data for the nine CRCand UCEC cases
Wefurther evaluated the pathways thatareenrichedin DACRsupreg-  withboth primary and metastasis samples available. First, by combining
ulated between metastaticand primary tumour samplesineachofthese  normal epithelial cells with cancer cells, we observed distinct clusters
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composed of neoplastic cells, with prevalence varying between primary
and metastatic samples in each cluster (Fig. 4e,f and Extended Data
Fig. 8b). We next evaluated TF-motif accessibility profiles of primary,
metastatic and normal epithelial cells in each cluster from those nine
cases (Extended Data Fig. 8c). By conducting trajectory analysis of
tumour and normal epithelial cells, we observed that all of the paired
primary-metastatic samples followed a linear trajectory, gradually
progressing from normal (if available) to primary to metastatic cells
(Fig. 4e,fand Extended Data Fig. 9a-g). This suggests that trajectory
pseudotimes reflect the metastatic process. We found that the trajec-
tories of samples were positively correlated with known EMT-specific
motifs and other motifsimplicated in the metastases, such as SNAI1 and
PBX3* (Fig. 4e,f, Supplementary Note 5 and Supplementary Table 7).
Leveraging the trajectory analysis, we identified ACRs that are signifi-
cantly associated with pseudotimes (Methods) and further evaluated
pathwaysthatareenriched inthose ACRs (Extended DataFig. 9h) from
nine cases. Although some variations were observed across samples,
the top pathways (for example, EMT, myogenesis, apical junction, early
oestrogenresponse) enriched in metastases found at the cohort level
were redetected in the majority of the cases (Extended Data Fig. 9h and
Supplementary Note 6).

Genetic and epigeneticinteractions

To facilitate the investigation of how epigenetic drivers interact with
genetic drivers, we performed genetic characterizations of somatic
mutations and copy-number variations (CNVs) on the 176 tumour sam-
ples with available WES data (Supplementary Table 8). The mutation
burdens across cancer types were similar to those that were previ-
ously reported® (Extended Data Fig. 10a and Supplementary Note 7).
We further investigated the impact of TP53 missense and truncation
mutations on chromatin accessibility within BRCA samples, which were
enriched for TP53 mutations (Extended Data Fig.10b). For this analysis,
we used ACRs that overlapped with TP53 ChIP-seq peaks obtained from
ENCODE?, also requiring that they contain a TP53-binding motif. The
only ACRidentified in both comparisons was the one associated with
GDF15—aknown target of TP53° that mediates Gl cell cycle arrest and
apoptosis and is involved in treatment resistance and maintenance
of BRCA stem-like cells®'. FGD3, a positive prognostic feature in BRCA
that inhibits cell migration®?, was identified in DACRs associated with
wild-type versus missense TP53.

Wealsoinvestigated the accessibility of TERT promoter (TERTp) with
hotspot mutations in cancer and normal cells. We profiled two TERTp
hotspot mutations C228T (chromosome 5,1295113, Gto A) and C250T
(chromosome 5,1295135, Gto A) in the analyses. The C228T mutation
was primarily detected in GBM cancer cells, whereas the C250T muta-
tionwas typically observedin SKCM cancer cells. Out of all samples, 25
showed TERTp mutations, with the majority of the variants preferen-
tially accessible in cancer cells, which was also inaccordance with high
TERT expression from snRNA-seq data (Fig. 5a). Conversely, in normal
cells, the snATAC-seq coverage for TERTp positions was notably lower,
indicating the absence of TERTp accessibility in normal cells (Fig. 5a).
Compared with snATAC-seq data, bulk WES had a much lower variant
allele frequency of TERTp mutations, indicating that snATAC-seq ena-
bles the detection of mutations that induce chromatin accessibility
(Fig. 5a).

We have also evaluated the epigenetic regulation of oncogenes* by
correlating their expression with the accessibilities of the enhancers
(ACR-to-genelinks). We identified 30 oncogenes of which the expres-
sion was linked to enhancer accessibility, with the strongest links in
EGFR,KRAS, ERBB2, CTNNBI and MET (Fig.5b). Many oncogenes showed
numerous enhancer-to-gene links suggesting extensive and complex
epigenetic regulation of these genes. EGFR showed the highest num-
ber of links in HNSCC; this observation aligned with the highest EGFR
expressionand highest accessibility of enhancersinthe EGFR gene body

(Fig. 5c (only EGFR WES-based CNV-neutral samples were included in
the analysis) and Supplementary Table 8j). Accessibility of the EGFR
gene body in CESC was similar to thatin HNSCC. However, accessibility
of upstream enhancers was less prominent, which could explain lower
EGFR expression in CESC. Finally, EGFR accessibilities in BRCA basal
and CRCwere even less pronounced, showcasing granular epigenetic
regulation of EGFR independent of its CNV.

Clinically relevant epigenetic programs

We next searched for epigenomic programs with potential clinical
relevance. PITX3 regulon activity was notably higher in GBM cancer
cells (FDR =0.002) than in OPCs (Supplementary Table 4c). Regu-
lon activity scored using bulk RNA-seq expression data in TCGA
patients with GBM showed that increased PITX3 activity was associ-
ated with poor progression-free survival (hazard ratio (HR) =1.86,
log-rank P=0.00076) and poor overall survival (HR =1.84, log-rank
P=0.00085) (Fig.5d and Supplementary Table 9a,b). Inthe TCGA-PDAC
cohort,increased KLF6 regulon activity was also associated with poor
progression-free and overall survival (Fig. 5d and Supplementary
Table 9a,c). This observation is corroborated by our earlier findings
ofincreased KLF6 regulon activity and its motif accessibility (Fig. 3b),
and also increased gene expression and enhancer accessibility linked
to KLF6 (Fig. 2d) in primary PDAC cancer cells compared with in
ductal-like-2 cells. By contrast, the tissue-specific regulons E2F8 (CRC)
and BACH2 (GBM) had higher scores in the respective CNCs (Supple-
mentary Table 4c) and were linked to better survivalin the TCGA-CRC
and TCGA-GBM cohorts, respectively (Extended Data Fig.10c and Sup-
plementary Table 9b,d).

We furtherinvestigated the impact of human papillomavirus (HPV)
status on the landscape of active TFs (Methods and Supplementary
Table 1b). We observed a marked decrease in KLF4 regulon activity in
HPV-positive tumours compared with in HPV-negative tumoursin this
study, whichwas further validated in the TCGA-HNSCC cohort (Fig. 5e
and Supplementary Table 9e). We identified additional regulons with
potentially altered activity in HPV-positive HNSCC samples compared
with their HPV-negative counterparts (Supplementary Table 9e). Fur-
thermore, we identified CDX1, EGR1 and TBX21 as additional factors
affecting the overall survival in patients of the TCGA-HNSCC cohort
(Methods and Extended Data Fig. 10d). Specifically, patients with
increased TBX21 regulon activities tend to have a better survival,
whereas increased CDX1and EGR1 portends poorer prognosis.

Finally, to evaluate for therapeutically relevant genetic and epige-
neticalterations, weidentified cancer-specific DEGs and DACRs that are
potential drugtargets (Methods). Among druggable DEGs and DACRs,
we observed some well-known examples, including ESRI expression
and accessibility in BRCA and UCEC and VEGFA accessibility in ccRCC
and CRC (Extended DataFig.10e,f). Moreover, we observed instances
ofknowndrugtargets enriched in cancer types for which these targets
arenot used in clinical practice. Among these were EGFR accessibility
inccRCC, TOPI expressionin UCEC, MM and ccRCC, and FGFR2 expres-
sionin GBM, ccRCC and basal BRCA. These associations may indicate
targets that could be used therapeutically in these tumour types and
warrant further preclinical validation.

Discussion

We created and investigated a large-scale single-cell multi-omic atlas
of tumours and NATs from 225 samples across 11 cancer types, unveil-
ing diverse cancer and normal tissue cell types. Advancing beyond
previous bulk ATAC/RNA-seq studies, our analysis provides nuanced
insights into cancer biology, including cancer-specific epigenetic
architecture, relationships between normal and malignant cells, and
primary-to-metastatic transitions in the same lineage. We identified
CNCtypesonthe basis of shared chromatinaccessibility patterns with
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Fig.5| Theimpact of genetic drivers on chromatinaccessibility.a, TERTp
mutations (C228T and C250T) detected in five cancer types from snATAC-seq
dataand WES data. Read counts supporting the reference or mutantallelein
bulk WES data (top) and snATAC-seq data (bottom) are shown. snATAC-seq-
supported reads were counted separately for cancer cells and normal cells
and then normalized to the total number of cellsin each group. The heat map
atthe bottom shows TERT expression in cancer and normal cells per sample.
b, Epigenetic regulation of known oncogenes identified using snMultiome-seq
data.Each dot shows one enhancer-to-genelink zscore. The enhancer-to-gene z
score was computed by averaging ACR-to-gene link zscores for all ACRs falling
intooneenhancer, asannotated in the EpiMap or GeneHancer database. The
dot colour correspondstoacancer typein whichan ACR-to-gene link was
identified, and the dot size corresponds to normalized RNA expression of the

cancer cells, which may be suggestive of cell lineage and underscores
theimportance of epigenetic architecture in determining cell-of-origin,
as well as offering important insights into the transition from normal
cells to cancer. Identification of changes in chromatin accessibility
between primary and metastatic cancers of the same type and com-
parison across tumour types highlighted both commonalities and
distinctions in chromatin landscape and epigenetic programs govern-
ing cancer progression across cancer types.

Chromatin accessibility differences between primary and metastatic
tumours may hint at ways to interrupt metastatic transition. GATA6
TF motifs are depleted in open chromatin and GATA6 expression is
decreased in metastatic PDAC compared with primary PDAC. Further-
more, GATA6 regulon activity decreases in PDAC, CRC, OV and UCEC
primary cancer cells compared with their respective CNCs. GATA6 loss
inPDACinducesan EMT phenotype and is associated with basal subtype
and decreased overall survival, consistent with this finding*. We iden-
tified many putative epigenetic drivers that have not been previously
reported and cis-regulatory elements that correlate with important
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genesshown on the xaxis. ¢, Coverage plot of the EGFRregionin BRCA basal,
CESC,HNSCC and CRC cancer cells. Only samples with neutral EGFR CNV were
included. EGFRRNA expressionis shownontheright.d, Kaplan-Meier plots
and analysis of progression-free survival in the TCGA-GBM cohort stratified by
PITX3 regulonactivity (top) and in the TCGA-PDAC cohort stratified by KLF6
regulonactivity (bottom). The error bands represent the 95% confidence
intervals. Two-sided Pvalues calculated using log-rank (Mantel-Cox) tests are
indicated. High- and low-regulon-activity groups are defined on the basis of
values above and below the median, respectively. nis specified for each patient
subgroup. e, Regulon activity of KLF4 in HPV-positive and HPV-negative
HNSCCsamples from this study (top) and TCGA-HNSCC (bottom). Pvalues
calculated using two-sided Wilcoxon rank-sum tests are shown.

TFs.Wealso identified proximal and distal enhancers that arelinked to
ASAP2upregulationin primary PDAC cells, which promotes cell migra-
tionand tumour growthin vitro and in PDAC xenograft models¥, as well
as identifying genetic drivers (TP53 mutant in BRCA) that influence
the chromatin accessibility of genes that are involved in cell motility,
invasion and proliferation (GDFI15 and FGD3). Integrated analysis of
bulk WES, snRNA-seq and snATAC-seq in this study further highlights
the allele-specific chromatin accessibility effect of TERTp mutations
across cancers. The finding of strong associations between cancer
drivers, such as EGFR, KRAS and MET and their associated enhancers,
further stresses theimportance of epigenetic and geneticinteraction
during tumorigenesis. Further functional validation will shed light on
key regulatory pathways in cancer (Supplementary Note 8).
Understanding the landscape of chromatin architecture across
tumours, chromatin accessibility changes at critical cancer transitions,
andtheinterplay between chromatin accessibility, genetic alterations
and transcriptional patterns is crucial to advancing cancer biology
and clinical practice. Certain changes in chromatin accessibility that



represent critical events/drivers of cancer initiation and metastatic
spread may be potential therapeutic targets. Although TFs them-
selves are very difficult to target with traditional therapeutics and
their many-varied rolesin normal tissues raise concerns for off-target
effects, we highlighted potentially targetable elements by focusing on
broad transcriptional programs. Finally, we anticipate that this atlas
will be a valuable resource for future cancer studies.
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Methods

Specimendata

All samples for MM, OV, BRCA, PDAC, UCEC, CRC, CESC/AD, SKCM
and HNSCC, as well as 2 NATs for GBM and 1 NAT for ccRCC were
collected with informed consent in concordance with Institutional
Review Board (IRB) approval at the School of Medicine at Washing-
ton University in St Louis. IRB protocols were as follows: 201105374,
201108117,201407156,202106166, 201911095, 201102270, 201103136
and 201102312. Tumour samples were collected during surgi-
cal resection and verified by standard pathology. GBM and ccRCC
samples originating from the NCI CPTAC were part of previous
studies™,

Experimental methods

Nucleus lysis for snMultiome-seq. Approximately 20-30 mg of
flash-frozen or cryopulverized or 200 um of OCT sections of tissue
from each sample wasretrieved and aliquoted for nucleus preparation
for the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sion sequencing protocol for simultaneously profiling epigenomic
landscape and gene expression in the same individual nuclei. The
samples were resuspended in lysis buffer (10 mM Tris-HCI (pH 7.4)
(Thermo Fisher Scientific, 15567027), 10 mM NaCl (Thermo Fisher
Scientific, AM9759),3 mM MgCl, (Thermo Fisher Scientific, AM9530G),
NP-40 substitute (Sigma-Aldrich, 74385-1L),1 MDTT (Sigma-Aldrich,
646563),10% stock BSA solution (MACS, 130-091-376), nuclease-free
water (Invitrogen, AM9937), plus 0.1U pl™ RNase Inhibitor), resus-
pended and homogenized using a pestle, and filtered through a40 pm
cell strainer (pluriSelect), then washed with wash buffer (2% BSA +
1xPBS +RNase inhibitor). Thefiltrate was collected, then centrifuged
at500g for 6 minat4 °C. The nuclear pellet was then resuspended in
BSA wash buffer with RNase inhibitor, stained with 7AAD, and nuclei
were purified and single-cell sorted using fluorescence-activated cell
sorting (FACS). After counting and microscopy inspection of nucleus
quality and concentration, nucleus suspensions were incubated ina
transposition mix thatincluded atransposase, while adapter sequenc-
es were simultaneously added to the ends of the DNA fragments and
the preparation was diluted to 3,000-8,000 nuclei per pl to be used
as one reaction for downstream preparation of both ATAC and gene
expression preparation. About 20,000 nuclei were used for analysis
using the Next GEM Single Cell Multiome ATAC + Gene Expression kit
(10x Genomics) and gel beads in emulsion (GEMs) using the Chro-
mium Next GEM ChipJ Single Cell Kit, 16 rxns (PN-1000230). After
post GEM-RT cleanup, the pre-amplification step was performed and
the pre-amplified product was used as the input for both ATAC library
construction and cDNA amplification for gene expression library
construction. cDNA amplification/tagging was performed with 16
nucleotide barcodes and 10 nucleotide molecular identifiers during
the reverse transcription (RT) reaction. After pre-amplification, the
sample was divided and used as aninput for two separate steps: 40 pl
of the sample was used for ATAC library construction and 35 pl of the
sample was used for cDNA amplification. Only 25% of the total cDNA
was used for generation of GEX libraries for snRNA-Seq. Libraries were
sequenced using the 10x Genomics Single Index N Set according to the
manufacturer’s protocol for snATAC; and, for snRNA the 10x Genomics
DualIndex TT Set Awas used according to the manufacturer’s protocol
for library preparation.

FACS analysis. Depending on the pellet size, 100-500 pl of nucleus
suspensioninthe wash buffer (2% BSA +1x PBS + RNase inhibitor) was
stained with DRAQS or 7AAD for RNA or ATAC sequencing, respec-
tively. Specifically, snRNA-seq nuclei were stained with 1 pul of DRAQS
per 300 plof the sample and snATAC-seq nuclei were stained with 1 pl
of 7AAD per 500 pl of the sample. Sorting gates were based on size,
granularity and dye staining signal.

Multiple myeloma single-cell suspension preparation and sequenc-
ing. Bone marrow mononuclear cell aliquots were centrifuged, after
thawing, at 300g for 5 min to pellet cells. All supernatants were
removed. To prepare cells for processing using the Miltenyi Dead Cell
RemovalKit, cellswere resuspended in100 pl of beads and incubated at
roomtemperature for 15 min. Cells were thenrun through the DepleteS
selection using the autoMACS Pro Separator. The negative fraction
(live cells) was pelleted by centrifugation at 450g for 5 min. Cells were
finally resuspended in ice-cold phosphate-buffered saline (PBS) and
0.5% BSA and loaded onto a10x Genomics Chromium Controller. The
samples were loaded using the 10x Genomics Chromium Next GEM
Single Cell 3’ GEM, Library & Gel Bead Kit v2. Barcoded libraries were
then pooled and sequenced on the Illumina NovaSeq 6000 system
with associated flow cells.

Nucleus lysis for snRNA-seq and snATAC-seq. First, 15-25 mg of
pulverized tissue was placedinto a5 mlEppendorftube onice. Using
awide-bore pipette tip (Rainin), a lysis buffer prepared according
to the nucleus-isolation protocol (10x Genomics) and SuperRNase
inhibitor (Invitrogen) were added to the tube. The tissue solution
was gently pipetted until the lysis liquid turned a slightly cloudy
colour (the number of pipetting iterations depended on the specific
tissue). The tissue homogenate was then filtered through a 40 um
strainer (pluriSelect) and washed with a BSA wash buffer (2% BSA + 1x
PBS + RNase inhibitor). The filtrate was collected, centrifuged at 500g
for 6 minat4 °C and resuspended with a BSA wash buffer. Then, 100 pl
of cell lysis solution was set aside as the unstained reference, and the
rest was stained with 7JAAD or DRAQS depending on the ATAC or RNA
protocol. Nuclei underwent FACS and sorting gates were based on
size, granularity and dye staining signal. The final suspension was
centrifuged at 500gfor 6 minat4 °C and resuspended with a BSA wash
buffer. More specific details about the RNA protocol can be found at
protocols.io (https://doi.org/10.17504/protocols.io.14egn7w6zv5d/
v1 (RNA protocol); for the ATAC protocol, 7AAD was substituted
for dye).

10x library preparation and sequencing of snRNA-seq and
snATAC-seq. Nuclei and barcoded beads were isolated in oil drop-
lets using the 10x Genomics Chromium instrument. Single-nucleus
suspensions were counted and adjusted to a range of 500 to 1,800
nuclei per pl using a haemocytometer. Reverse transcription was
subsequently performed to incorporate cell-and transcript-specific
barcodes. AllsnRNA-seq samples were run using the Chromium Next
GEM Single Cell 3’ Library and Gel Bead Kit v3.1 (10x Genomics). For
snATAC-seq, the Chromium Next GEM Single Cell ATAC Library and Gel
Bead Kit v1.1 prep (10x Genomics) was used for a subset of samples.
For the multiome kit, the Chromium Next GEM Single Cell Multiome
ATAC + Gene Expression kit was used. Barcoded libraries were then
pooled and sequenced on the lllumina NovaSeq 6000 system with
the associated flow cells.

Genomic DNA extraction. Tumour tissues and corresponding normal
adjacent tissue were obtained from surgically resected specimens
and, after a piece was removed for fresh single-cell preparation, the
remaining sample was snap-frozen in liquid nitrogen and stored at
-80 °C.Before bulk DNA extraction, the samples were cryo-pulverized
(Covaris) and aliquoted for bulk extraction methods. Genomic DNA
was extracted from tissue samples using either the DNeasy Blood and
TissueKit (Qiagen, 69504) or the QIAamp DNA MiniKit (Qiagen, 51304).
Genomic germline DNA was purified from cryopreserved peripheral
blood mononuclear cells using the QiaAMP DNA Mini Kit (Qiagen,
51304) according to the manufacturer’s instructions (Qiagen). The
DNA quantity was assessed by fluorometry using the Qubit dsDNA HS
Assay (Q32854) according to manufacturer’s instructions (Thermo
Fisher Scientific).


https://doi.org/10.17504/protocols.io.14egn7w6zv5d/v1
https://doi.org/10.17504/protocols.io.14egn7w6zv5d/v1

WES data generation. A total of 100-250 ng of genomic DNA was
fragmented on the Covaris LE220 instrument targeting 250 bp
inserts. Automated dual-indexed libraries were constructed using
the KAPA Hyper library prep kit (Roche) on the SciClone NGS plat-
form (Perkin EImer). Up to tenlibraries were pooled at an equimolar
ratio by mass before the hybrid capture targeting a 5 pg library pool.
The library pools were hybridized using the xGen Exome Research
Panel v1.0 reagent (IDT Technologies) that spans a39 Mb target region
(19,396 genes) of the human genome. The libraries were hybridized
for16-18 hat 65 °C followed by stringent wash to remove spuriously
hybridized library fragments. Enriched library fragments were eluted
and PCR cycle optimization was performed to prevent over ampli-
fication. The enriched libraries were amplified using the KAPA HiFi
master mix (Roche) before sequencing. The concentration of each
captured library pool was determined by quantitative PCR (qQPCR)
using the KAPA library Quantification Kit according to the manufac-
turer’s protocol (Roche) to produce cluster counts appropriate for
the Illumina NovaSeq 6000 instrument. 2 x 150 bp paired-end reads
were generated targeting 12 Gb of sequence to achieve around 100x
coverage per library. Matching WES data were generated for 195 out
of the 225 snATAC-seq samples. Of these 195 samples, tumour was
available and used to generate 173 WES libraries corresponding to 176
of the snATAC-seq samples.

Cell lines. The Caki-1cell line was purchased from ATCC (ATCC, HTB-
46, https://www.atcc.org/products/htb-46) and authenticated using
short-tandem-repeat (STR) profiling by ATCC. The MCF7 cell line was
purchased from ATCC (ATCC, HTB-22, https://www.atcc.org/prod-
ucts/htb-22) and authenticated by STR profiling by ATCC. The U251
cellline was obtained from a previous study**, and was authenticated
by STR profiling. No cell line used in this paperis listed in the database
of commonly misidentified cell lines maintained by the International
CellLine Authentication Committee (ICLAC). All of the cell lines used
here tested negative for mycoplasma contamination using MycoAlert
(Lonza, LT07-118).

CUT&RUN experiment. The Caki-1, MCF7 and U251 cell lines were
cultured under designated conditions according to information on
the American Type Culture Collection (ATCC) website (https:/www.
atcc.org/). When cells reached the desired confluence and numbers,
the CUT&RUN Kit (14-1048, EpiCypher) and CUT&RUN Library Prep
Kit (14-1002, EpiCyher) were applied according to the manufactur-
er’s protocols. In brief, wash buffer, cell permeabilization buffer and
antibody buffer were freshly prepared on day 1. ConA Beads were acti-
vated by washing and then diluted with a cold bead activation buffer.
After these steps, 500,000 cells were collected for each reaction, fol-
lowed by resuspending in awash buffer and mixing well with activated
beads. After 10 min ofincubation at room temperature, the tubes were
placed onan 8-strip magnet until the slurries cleared. The supernatant
was removed and a cold antibody buffer was added to each reaction.
The SNAP-CUTANA K-MetStat Panel was first added to the reactions
designed for positive (H3K4me3) and negative (IgG) control antibod-
ies. Then, 0.5 pg designated antibody was added to each reaction and
incubated overnight. The next day, antibody-bound histone PTM or
chromatin-interacting protein was washed with the cell permeabi-
lization buffer. Next, pAG-MNase was added to cleave target-DNA
complexes. Targeted chromatin was then digested and released by
adding calciumchloride, Escherichia colispike-in DNA and Stop Buffer
Master Mix. DNA was purified, and up to 5 ng CUT&RUN-enriched DNA
was used for further library construction according to the CUTANA
CUT&RUN Library PrepKit. Library fragment sizes were analysed using
the TapeStation and the libraries were sequenced.

Thefollowing antibodies were used in CUT&RUN analysis: anti-NRF1
(46743, Cell Signalling Technology) and anti-CTCF (3418, Cell Signal-
ling Technology).

Validation using mouse models. The following mouse strains (Mus
musculus) were used as part of this study: p48-Cre mice (C57BL/6) back-
ground; laboratory of S. Hingorani); LSL-KrasG12D mice (C57BL/6)
background;Jackson Laboratory, 008179); Trp53"°* mice (C57BL/6)
background;Jackson Laboratory, 008462). All animal studies were
completed in accordance with NIH-AALAC standards and consistent
with Washington University School of Medicine IACUC regulations
(protocol, 22-0233), and studies were approved by Washington Uni-
versity School of Medicine Institutional Animal Studies Committee. All
animals were housed in a barrier facility under a12 h-12 hlight-dark
cycle with1-5 mice per cage.

For mpIHC analysis of mouse PDACs, embedded tissues were sec-
tioned into 6 pm sections and loaded into BOND RXm (Leica Biosys-
tems) for aseries of staining, including using antibodies against GATA6
(Invitrogen, PA1-104) and CK19 (Cell Signaling Technology, 12434). On
the basis of antibody host species, the default manufacturer protocols
were used (IntenseR and Polymer Refine), including antigen retrieval
with citrate buffer, goat serum and peroxide block; primary antibody
incubation; post-primary incubation; and chromogenic visualization
using an AEC substrate (Abcam). Between every two cycles of staining,
the slides were manually stained with haematoxylin and eosin, then
scanned using the Axio Scan.Z1 (Zeiss) system. The slides were then
destained by a gradient of ethanol plus a 2% hydrochloride wash and
blocked with extra avidin/biotin (Vector Laboratories) and aFab frag-
mentblock (Jackson Laboratory). Citrate-based antigen retrieval was
performed before each staining cycle. Images of the same specimen,
but using different stains, were cropped into multiple segments using
Zen (Zeiss). Each segment was then deconvoluted (Deconvolution,
v.1.0.4; Indica Labs) forindividual stains and fused using HALO software
(Zeiss) with the default manufacturer’s settings. Markers of interest
were pseudocoloured and quantified using the High Plex FL module
within the HALO software.

Analytical methods

WES reads alignment. FASTQ files were preprocessed using trimGalore
v.0.6.7 (withthe parameter --length 36 and all of the other parameters
set to default; https://github.com/FelixKrueger/TrimGalore). FASTQ
fileswere thenaligned to the GDC’s GRCh38 humanreference genome
(GRCh38.d1.vd1) using BWA-mem*v.0.7.17 with parameter -M and all of
the other parameters set to default. The output SAM file was converted
to a BAM using samtools (https://github.com/samtools/samtools;
v.1.14) view with parameter -Shb, and all of the other parameters set
to default. BAM files were sorted and duplicates were marked using
the Picard v.2.6.26 SortSam tool with the following parameters: CRE-
ATE_INDEX=true, SORT_ORDER=coordinate, VALIDATION_STRINGEN-
CY =STRICT, and all others set to default; and MarkDuplicates with the
parameter REMOVE_DUPLICATES=true, and all others set to default.
The final BAM files were then indexed using samtools v.1.14 index with
all of the parameters set to the default.

Somatic mutation calling using bulk data. Somatic mutations were
called from WES using the Somaticwrapper pipeline v.1.6 (https://
github.com/ding-lab/somaticwrapper), whichincludes four different
callers, thatis, Strelka (v.2.9.10)°¢, MUTECT (v.1.1.7)¥, VarScan (v.2.3.8)*®
and Pindel (v.0.2.5)*°. We kept the exonic single-nucleotide variants
(SNVs) called by any two callersamong MUTECT v.1.1.7, VarScan v.2.3.8
and Strelkav.2.9.10, and indels called by any two callers among VarScan
v.2.3.8, Strelka v.2.9.10 and Pindel v.0.2.5. For the merged SNVs and
indels, we applied a 14x and 8x minimal coverage cut-off for tumour
and normal, separately. We also filtered SNVs and indels by a mini-
mal variantallele fraction (VAF) of 0.05 in tumours and a maximal VAF
of 0.02 in normal samples. We also filtered any SNV within 10 bp of
anindel found in the same tumour sample. Finally, we rescued the
rare mutations with VAF within 0.015 and 0.05 in ccRCC driver genes
on the basis of an established gene consensus list*. In adownstream
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step, Somaticwrapper combines adjacent SNVsinto double-nucleotide
polymorphisms (DNPs) using COCOON (https://github.com/ding-lab/
COCOONS): as the input, COCOON takes a MAF file from a standard
variant calling pipeline. First, it extracts variants within 2 bp windows
as DNP candidate sets. Next, if the corresponding BAM files used for
variant calling are available, it extracts the reads (denoted as n,) span-
ning all candidate DNP locations in each variant set and counts the
number of reads withall of the co-occurring variants (denoted asn,) to
calculate co-occurrencerate (r.= n./n,).1fr,> 0.8, the nearby SNVs will
be combinedinto DNPs, and COCOON will update the annotation for
the DNPs from the same codon based onthe transcript and coordinate
informationinthe MAF file. Finally, we rescued the rare mutations with
VAF of [0.015,0.05) in cancer driver genes based on the aforementioned
gene consensus list*. Further analysis focused on cancer driver genes
reported in the previous publications'#93*60-63,

Tumour-only somatic mutation calling using bulk data. For sam-
ples for which paired normal samples were not available, tumour-only
somatic variants were called using the Mutect2 (tool from GATK
v.4.1.2.0) tumour-only version of the Somaticwrapper pipeline
(https://github.com/ding-lab/somaticwrapper/tree/tonly.v1.0) with
the GDC panel of normal data (https://gdc.cancer.gov/about-data/
gdc-data-processing/gdc-reference-files; gatk4_mutect2_4136_pon.
vcf.tar). False positives were filtered out by retaining only variant sites
with >20x coverage and >3 alternate allele supporting reads with >0.1
alternate allele VAF. DNPs were again inferred using COCOON.

Manual genotyping. We used bam-readcount for both determining
and for manually verifying the KRAS mutation status in bulk WES at
KRAS hotspots Gly12, Glyl3 and GIné1. For each case, we first applied
bam-readcount to generate read counts for each of the nine bases (3
codonstimes 3 bases per codon) at these loci and then calculated VAF
values of all KRAS hotspots based on reference and alternative base
read counts ateach position. The only instance in which variants were
not already identified by the Somaticwrapper pipeline was in PDAC.
Owingtothe well-known high rate of KRAS hotspot mutations in PDAC
(>90%), any such mutations detected in PDAC during genotyping are
automatically reported®.

Toidentify KRAS hotspot mutation status, we applied our in-house
toolscVarScanthat canidentify reads supporting the reference and vari-
antalleles spanning the variant site in each individual cell by tracing cell
and molecular barcode informationin each snRNA BAMfile. For map-
ping, we used the Memorial Sloan Kettering Cancer Center Hotspots
website (https://www.cancerhotspots.org) to obtain the most com-
mon KRAS hotspot mutations at Gly12, Glyl3 and GIné61 and followed
with scVarScan to detect potential minority KRAS mutations in each
sample. For non-PDAC samples, hits were then filtered to high-quality
mutantallele counts > 5.

CNV calling on bulk whole-exome data. Somatic copy-number
variants were called using GATK (v.4.1.9.0)%. Specifically, the hg38
humanreference genome (NCIGDC data portal) was binned into target
intervals using the Preprocessintervals function, with bin-length set
to 1,000 bp and using the interval-merging-rule of OVERLAPPING_
ONLY. A panel of normals (PON) was then generated using each nor-
mal sample as an input and the GATK functions CollectReadCounts
with the argument --interval-merging-rule OVERLAPPING_ONLY,
followed by CreateReadCountPanelOfNormals with the argument
--minimum-interval-median-percentile 5.0. For tumour samples,
readsthat overlapped thetargetinterval were counted using the GATK
function CollectReadCounts. Tumour read counts were then stand-
ardized and de-noised using the GATK function DenoiseReadCounts,
with the PON specified by --count-panel-of-normals. Allelic counts for
tumours were generated for variants present in the af-only-gnomad.
hg38.vcfaccording to GATK best practices (variants further filtered

to 0.2 > af > 0.01 and entries marked with ‘PASS’) using the GATK
function CollectAllelicCounts. Segments were then modelled using
the GATK function ModelSegments, with the denoised copy ratio
and tumour allelic counts used as inputs. Copy ratios for segments
were then called on the segment regions using the GATK function
CallCopyRatioSegments.

Bedtools®® intersection was used to map copy-number ratios from
segments to genes and assign the called amplifications or deletions.
For genes overlapping multiple segments, a custom Python script
was used to call that gene as amplified, neutral or deleted based on a
weighted copy-number ratio calculated from copy ratios of each seg-
mentoverlapped, thelengths of the overlaps and the z-score threshold
used by the CallCopyRatioSegments function. If the resulting z-score
cut-off was within the range of the default z-score thresholds used by
CallCopyRatioSegments (v.0.9,1.1), then the bounds of the default
z-score threshold were used instead (replicating the logic of the Call-
CopyRatioSegments function).

To map copy-number ratios from segments to chromosome arms,
another script was used according to the same approach to then call
that chromosome arm as amplified, neutral or deleted. Due to the
increased read depths associated with ccRCC and GBM, the PON used
for GBM and ccRCC samples was composed exclusively of all of the
normal samples fromthose cancers. The PON used for all other cancer
types was compiled from all the normal samples across those remain-
ing cancer types.

Sequencing read alignments and quality control of sc/snRNA-seq
data. To process sequenced sc/snRNA-seq samples, Cell Ranger
(v.6.0.2) from 10x Genomics (with Count functionality) was used for
aligning reads to the prebuilt GRCh38 genome reference v.2020-A
(refdata-gex-GRCh38-2020-A). The resulting gene-by-cell unique
molecularidentifier (UMI) count matrix was used by the R package Seu-
rat (v.4.0.5)% for subsequent processing. Paired samples were required
tobe fromthe sametissue piece asan snATAC-seq sample and they were
generated from single nuclei, with the exception of MM samples, which
were generated fromsingle cells. Processed sc/snRNA-seq samples were
selected, provided that they met the filtering criteria detailed below.
The CellRanger report from each sample was then carefully evaluated
andweincluded samples with no critical errors or warnings. Examples
of errors for which samples were excluded were as follows: ‘Error: low
fraction reads confidently mapped to transcriptome’ or ‘Error: GEX
reads mapping to transcriptome is low’. Furthermore, samples were
excluded for less than 700 median genes per cell (except in certain
cases inwhich a high number of cells was detected).

Quality filters were applied to the data to remove barcodes that fell
into any of the following categories: possible debris with too few genes
expressed (<200) and too few UMIs (<1,000), possible more than one
cell with too many genes expressed (>10,000) and too many UMIs
(>80,000), possible dead cell or asign of cellular stress and apoptosis
with too high proportion of mitochondrial gene expression over the
total transcript counts (>10%) and cells predicted to be doublets by
Scrublet, as described below. The cut-offs for these filters were based
onrecommendations in the Seurat package documentation.

Normalization, feature selection, dimensionality reduction and
clustering of sc/snRNA-seq data. The filtered gene-count matrix was
scaled and normalized for sequencing depth using Seurat’s ‘SCTrans-
form’ function (with the parameters: vars.to.regress = c(“nCount_RNA”,
“percent.mito”), return.only.var.genes =F,and all others set to default).
Fromthis, the principal components were calculated using the Seurat
RunPCA function. Cells were clustered using a graph-based cluster-
ing (default of Seurat) approach. First, we used the Seurat function
FindNeighbors to embed cells in a k-nearest neighbour graph struc-
ture, based onthe Euclidean distance in principal component analysis
(PCA) space, with edges drawn between cells having similar expression
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patterns. We used the previously defined first 30 principal components
(PCs) as inputs to the function, while other parameters were left as
defaults. To cluster cells, we then applied modularity optimization
techniques (using the default Louvain algorithm from the Seurat func-
tion FindClusters) to iteratively group cells together to optimize the
standard modularity function. We set the resolution parameter at 0.5,
while other parameters were left as defaults.

Identification of doublets in sc/snRNA-seq. For the removal of
doublets, the Python package Scrublet v.0.2.3 was used to identify
doublets from the filtered cellranger gene-by-cell UMI count matrix.
Theinitial Scrublet object was generated from thefiltered CellRanger
gene-by-cellUMI count matrix using the Scrublet function (parameters:
expected_doublet_rate=0.15 and random_state set to arandom inte-
ger between 0and1,000,000). Cells were assigned doublet scores 10
times for each individual sample using the scr.scrub_doublets function
(parameters: min_counts=2, log_transform=True).Inthefinaliteration,
the random_state of the scrublet object is set to 0. After each itera-
tion, cells are clustered on doublet scores using the KMeans object
(with parameters: n_clusters=2, init="k-means++’, n_init=10, and max_
iter=10000) and fit_predict method using the Python package sklearn
v.0.24.2. Theboundary between the doublet and singlet clusters after
all iteration is then averaged to determine the final doublet cut-off,
whichis then used by the Scrublet call_doublets function to predict a
cell’sdoublet status.

Merging of sc/snRNA-seq data across samples. Cancer-cohort-level
objects were generated using the Seurat function merge to combine sc/
snRNA-seq samples objects after quality control. Barcodes annotated
asdoublets were removed fromall of the samples before merging. Once
merged, objects were normalized using the Seurat SCTransform func-
tionwith the same parameters as when normalizing individual objects.
Cells were then clustered using the top 50 PCA dimensions using the
FindNeighbors and FindClusters functions with Resolution=0.5. To
generate the merged pan-cancer objects (containing all cell types, or
tumour and selected normal cell types; Extended Data Fig. 2¢,f), the
same steps were taken starting from the cancer cohort objects. To make
amerged object with all cell types, 600 cells were randomly sampled
for each cohort-level cluster, and the resulting set of cells was used for
merging. The resulting normalized matrices of merged objects were
used for subsequent analysis.

Cell type annotation of sc/snRNA-seq data. We curated from the
literature a list of well-known markers (Supplementary Table 1e and
Supplementary Fig. 2c-f). Using the integrated sc/snRNA-seq data of all
cellsfromeach cancer type at atime, we filtered the marker genes down
tothosethat were expressedin atleast 5% of at least one cluster. We then
labelled each cluster with cell type names by examining the expression
values and the percentages expressed of all the filtered marker genes
acrossall clusters (using the Dotplot function of the Seurat package).
Finally, we also validated cancer cell type annotation using inferCNV
results (Supplementary Fig. 2b). Detailed normal epithelial cell annota-
tion was also performed using the expression of known markers (see
normal pancreas cell, normal colon celland normal kidney cell markers
inSupplementary Table 1e). First, we isolated and reclustered normal
epithelial cells from the PDAC, CRC and ccRCC cancer types, then we
evaluated the expression of marker genes across clusters (using the
Dotplot function of the Seurat package).

BRCA sample basal and non-basal subtype annotation. It was pre-
viously reported that BRCA samples of basal and non-basal subtypes
tend to have different chromatin accessibility landscapes®. To annotate
samples with basal and non-basal subtypes, we used two methods. First,
we checked the expression of PAMS50 genes®® across tumour cells of each
sample using snRNA-seq data (Supplementary Fig. 7). We examined the

per-sample expression of those markers using the DotPlot function of
the Seurat package and found specific expressions of PAMS50 signatures
across samples. We next performed correlation analysis based on TF
motif accessibility scores from snATAC-seq data. For this, we used TF
scores averaged across cancer cells of each sample (Supplementary
Fig.8). We observed two clusters of samples, corresponding to samples
ofbasal and non-basal subtypes. These two orthogonal approaches pro-
ducedsimilar results, and we used the resulting annotation to separate
BRCA samples into basal and non-basal groups.

InferCNV analysis. To detect large-scale chromosomal CNVs using sc/
snRNA-seq data, inferCNV v.0.99.7 was used with the default param-
eters recommended for 10x Genomics data. InferCNV was run at the
sample level and only with post-quality-control filtered data using the
raw counts matrix. ToruninferCNV on all samples, it was necessary to
set ‘ulimit -s unlimited’ in the bash environment followed by defining
options (expressions=500000) within R. For specific samples, when
the hidden Markov model did not converge with these changes, it was
necessary to useinferCNVv.1.11.2. Once finished, copy ratio calls for all
genesinacell were gathered from the hidden Markov model outputs.
For snATAC-seq inferCNV was run in an identical manner as to the sc/
snRNA-seq calls using the filtered gene accessibility by cell matrix.

scVarScan mutation mapping. We applied an in-house tool called
scVarScan, which can identify reads supporting the reference allele
and variant allele covering the variant site in each individual cell by
tracing cell and molecular barcode information in a sc/snRNA-seq
BAM file. The tool is freely available at GitHub (https://github.com/
ding-lab/10Xmapping). For mapping, we used high-confidence somatic
mutations from WES data.

Identifying differentially expressed genes using sc/snRNA-seq data.
To perform differential expression analysis, we used the FindMarkers
function from the Seurat package with default Wilcoxon rank-sum test-
ing. For all DEG analysis, we used a merged object containing selected
normal and cancer cells from all cancers. First, to identify tissue- and
cancer-cell specific DEGs, we compared cancer cells from each tumour
type to the combined set of cancer cells from all other tumours. We
specified the following parameters: min.pct=0.1, min.diff.pct=0, logfc.
threshold=0and only.pos=T. Next, to identify cancer cell-specific DEGs,
we performed the comparison between cancer cells and their closest
normal cell type (Fig. 1c) for each cancer. For this analysis, we used
cancer cells from primary tumours only. Moreover, we specified the
following parameters: min.pct=0.05, min.diff.pct=0, logfc.threshold=0
and only.pos=F. Finally, to identify metastasis-associated DEGs, we
compared neoplastic cells from primary tumours versus neoplastic
cells from metastatic tumours from four cohorts used in the analysis
(CRC, PDAC, SKCM and UCEC). The following parameters were speci-
fied: min.pct=0.1, min.diff.pct=0, logfc.threshold=0 and only.pos=F.
For all DEG analysis, Bonferroni correction was applied for P value
adjustment using all genes from each comparison, and DEGs were
considered to be significant if they had an adjusted P < 0.05.

Gene regulatory network analysis using SCENIC. To infer gene regu-
latory networks, we used the SCENIC pipeline pySCENIC command line
interface version (v.0.11.2)*. We ran SCENIC onan SCT-normalized assay
of sampled sc/snRNA-seq merged object, 200 cells sampled randomly
per celltype of each sample. For the first step we used the GRNBoost2
method, as it is suggested for large scale datasets. For the input, we
provided the list of unique TFs that are present in JASPAR2020 db®’.
Steps2and 3 of regulon prediction were run with the default parameters
usingthe RcisTarget hg38_refseq-r80 v.9 gene-motif ranking databases
(10 kbaround the TSS, and 500 bp around the TSS). As the first step of
the SCENIC pipelineis using a stochastic gradient boosting algorithm,
itis suggested by the developers to run it multiple times and to filter
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TFsand their targets to those that were reported across multipleitera-
tions™. Consequently, we ran the SCENIC pipeline ten times and filtered
TFsand their targets to those that appeared in at least 80% of SCENIC
runs. We thenrecalculated AUC scores for the resulting regulons using
the AUCell (v.1.19.1) R package. Finally, we filtered regulons to those that
contain at least 20 target genes. By using this approach, we were able
to obtain amore stable set of regulons that are active in our dataset.

To prioritize regulons for Fig. 3a, we first conducted a differential
analysis comparing neoplastic cells from each cancer versus neoplastic
cells from all other cancers (primary tumours only), using regulons’
AUCscores. For this, we used atwo-sided Wilcoxon test, and the result-
ing Pvalues were adjusted using the Benjamini-Hochberg FDR method.
We selected regulons that were both significant (FDR < 0.05) and that
alsomet the following criteria: fold change between the two groups of
greater than1.5and the meanscoreincell group 1exceeding the median
of meanscoresacrossall cell groups. The top 10 suchregulons with the
highest fold change were selected in each cancer type. If there were
lessthan10 regulons that passed these criteria, then all regulons were
taken for that cancer type. We also added the following regulon-cancer
pairs that were supported by comparing TF scores for the same cells’
group analysis using snATAC-seq data: KLF6 in PDAC, NRF1in GBM,
RARA in BRCA (non-basal), MXI1in ccRCC, E2F7 in GBM and ELF3 in
PDAC. Next, to annotate regulons as tissue- or cancer-cell-specific, we
performed differential regulon analysis between tumour cells and their
CNCsforeach cancer type. For this, we used a two-sided Wilcoxon test,
and the resulting P values were adjusted using the Benjamini-Hoch-
berg FDR method. The regulon was annotated as cancer-cell-specific
if FDR < 0.05, the difference in scores between these groups was >0.01
andlog,[FC]>0.1.

Pathway analysis using sc/snRNA-seq data. For the analysis of the
pathways’ activities across regulon gene targets (Extended Data Fig. 6e),
we used the sets of genes per tissue- and cancer-cell-specific regulons
that were also DEGs in the same cancer (Supplementary Table 2b). We
then calculated pathway activity scores using the Jaccard index between
the sets of resulting regulons’ targets and the sets of genes from hall-
mark MSigDB” pathways. We further performed over-representation
analysis using hypergeometric test from the fgsea R package. Pvalues
were adjusted using Benjamini-Hochberg FDR correction.

Sequencing read alignments of snATAC-seq and snMultiome-seq.
To process sequenced snATAC-seq and snMutiome-seq data, we used
the CellRanger-atac count (v.2.0, 10x Genomics) and CellRanger-arc
count (v.2.0,10x Genomics) pipelines, respectively. These pipelines
filter and map snATAC-seq reads and identify transposase cut sites,
and the CellRanger-arc pipeline also performs filtering and align-
ment of snRNA-seq reads. The GRCh38 human reference was used
for the read mapping (refdata-cellranger-arc-GRCh38-2020-A-2.0.0).
Owing to low snRNA-seq quality, the snATAC-seq part of some
snMultiome-seq samples was separately run with the modified version
of CellRanger-atac v.2.0, which had ATAC cell barcodes replaced with
snMultiome-seqbarcodes. In particular, the snMultiome-seqbarcode
file cellranger-arc-2.0.0/lib/python/atac/barcodes/737K-arc-v1.txt was
copiedinto CellRanger-atac directory cellranger-atac-2.0.0/lib/python/
barcodes/ and renamed to 737K-cratac-vl.txt. The CellRanger report
from each sample was carefully evaluated and we excluded samples
with few errors, except the ‘Number of cells is too high’ error, while
retaining samples with no errors or with just warnings. Examples of
errors for which we removed samples are as follows: ‘ATAC high-quality
fragmentsin cellsis low’,’ATAC TSS enrichment is low’ and ‘ATAC frag-
mentsin peaksislow’.

Peak calling for snATAC-seq data. To call peaks on snATAC-seq data
(from regular snATAC-seq and from snMultiome-seq), we used the
MACS2 tool (v.2.2.7.1)”2 through the CallPeaks function of the Signac

package (v.1.3.0, https://github.com/timoast/signac). We further
removed peaks from the Y chromosome, as well as those overlapping
genomic regions containing ‘N’. All peaks were resized to 501 bp cen-
tred at the peak summit defined by MACS2. We next performed the
iterative removal procedure described previously® to get the set of
non-overlapping peaks. In brief, we start with retaining the most signifi-
cant peak by MACS2 peak score (-log;,[g]), removingall peaks that have
direct overlap withit. Werepeat this procedure for the remaining peaks,
until we have the set of non-overlapping peaks. The resulting sample
peak set was used to calculate peak-count matrix using FeatureMatrix
fromthe Signac package, which was also used for downstream analysis.

Quality control of snATAC-seq data. Quality-control filtering of
the snATAC-seq datasets was performed using functions from the
Signac package. Filters that were applied for the cell calling include:
1,000 < number of fragments in peaks <20,000; percentage of reads
in peaks > 15; ENCODE blacklist regions percentage < 0.05 (https://
www.encodeproject.org/annotations/ENCSR636HFF/); nucleosome
banding pattern score < 5; and enrichment-score for Tn5-integration
events at transcriptional start sites > 2. Open chromatin regions were
annotated with the R package ChIPseeker (v.1.26.2)” using transcript
database TxDb.Hsapiens.UCSC.hg38.knownGene. The promoter region
was specified (-1000,100) relative to the TSS.

Normalization, feature selection, dimensionality reduction and
clustering of snATAC-seq data. The filtered peak-count matrix was
normalized using term frequency-inverse document frequency (TF-IDF)
normalization implemented in the Signac package. This procedure
normalizes across cells, accounting for differences in coverage across
them and across peaks, giving higher values to the rarer peaks. All peaks
were used as features for dimensional reduction. We used the RunSVD
Signac function to performsingular value decomposition on the nor-
malized TF-IDF matrix, amethod thatis also known as latent semantic
indexing (LSI) dimension reduction. Theresulting 2:30 LSIcomponents
were used for nonlinear dimensionality reduction using the RunUMAP
function from the Seurat package. The nuclei were clustered using a
graph-based clustering approach implemented in Seurat. First, we
used the Seurat function FindNeighbors to construct a shared near-
est neighbour graph using the 2:30 LSI components. We next used
the FindClusters function to iteratively group nuclei together while
optimizing modularity using the Louvain algorithm.

Quality control, normalization, feature selection, dimensionality
reduction and clustering of snMutiome-seq data. For snMultiome-seq
data containing profiles of both snRNA- and snATAC-seq data, we first
performed separate processing and filtering of cells using the same
steps as were described for the processing of separate sc/snRNA-seq
and snATAC-seq assays. To obtain the final list of barcodes, we retained
the cells that passed the quality control filters in both the snRNA-
and snATAC-seq assays. In the result, we obtained filtered gene- and
peak-count matrices for the same set of cells. We then performed TF-IDF
normalization of the peak-count matrix, followed by LSI dimension-
ality reduction using the RunTFIDF and RunSVD Signac functions.
For normalization and dimensionality reduction of the gene-count
matrix, we used the SCTransform and RunPCA functions of Seu-
rat with the same parameters as used for regular sc/snRNA-seq data
processing.

We next computed the weighted nearest neighbour (WNN) graph
with the FindMultiModalNeighbors function using both data modali-
ties. We used 1:30 PCA components from snRNA-seq and 2:30 LSI
components from snATAC-seq for this analysis. We performed non-
linear dimensionality reduction of the resulting WNN graph using the
RunUMAP function of Seurat. Finally, we obtained clusters with the
FindClusters function using the WNN graph, setting the argument
algorithm =3 (SLM).
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Identification of doublets in snATAC-seq and snMultiome-seq
samples. To identify doublets in snATAC-seq data, we used the
Python package Scrublet v.0.2.3 onthe filtered cellranger peak-by-cell
UMI count matrix. The processing steps were the same as for doublet
identificationin sc/snRNA-seq. To assign doublets for snMultiome-seq
barcodes, we performed doublet identification separately on the
filtered CellRanger peak-by-cell and gene-by-cell UMI count matrices.
We annotated abarcode asadoublet ifit was identified as a doublet by
using both assays.

Merging of snATAC-seq data across samples (cohort-level objects).
To create snATAC-seq cohort-level merged objects, functions fromthe
Signac and Seurat packages were used. To normalize peak significance
scores across samples and cancers, we converted MACS2 peak scores
(-logyolg]) to ascore per million as described previously®. To get the set
of peaks for merging, we first combined peaks from all of the samples
for each cohort separately. For overlapping peaks in each cohort, we
performed an iterative removal procedure, the same as was used for
creating individual sample peak sets, using normalized peak scores as
described above. Using this procedure, we obtained the cancer-type-
level peak sets. To gain the pan-cancer set of non-overlapping peaks,
we renormalized peak scores using the score per million normaliza-
tion procedure described above and performed the same iterative
removal procedure for the combined cohort-level peak set from all
11 cancer types. The resulting list of pan-cancer peaks was quantified
in each cohort using the FeatureMatrix Signac function, so that the
resulting peak-cell matrices had the same set of features in all of the
samples processed.

To merge snATAC-seq datasets, the merge function of the Seurat
package was used. We next performed TF-IDF normalization and
LSI-dimensionality reduction using the RunSVD function from the Sig-
nac package. Non-linear dimensionality reduction was performed using
the RunUMAP function with 2:50 LSI components. For analysis involving
CNC, we also created two additional merged objects (HNSCC-CESC/
AD and UCEC/QV), so that they contain CNC for the HNSCC and OV
cohorts, respectively.

Merging of shnATAC-seq data across cancers (pan-cancer-level
objects). For the analysis involving comparisons between cancers,
we aimed to create a pan-cancer-level merged object. To reduce the
computational complexity, we subsetted tumour and selected normal
celltypesfor each cohort that canbe the putative cell-of-origin: luminal
mature and luminal/basal progenitors for BRCA; oligodendrocytes,
OPC and astrocytes for GBM; acinar and islet for PDAC; ciliated and
secretory endometrial epithelial cells from UCEC; and other normal
epithelial cells fromall cohorts where they were available, and normal
B cells from the MM cohort (Extended Data Fig. 2b,e). We further ran-
domly sampled 1,000 cells for each cohort-level cluster for this. We
next used amerge procedure, followed by TF-IDF normalization and LSI
dimensionality reduction using Seurat and Signac package functions.
For nonlinear dimension reduction with the RunUMAP function, we
used 2:150 LSI components. The resulting merged object normalized
peak by cell matrix was used in the pan-cancer analysis and in the analy-
sis of TF motif accessibility differences (Extended Data Fig. 2b,e). We
alsomade another merged object to compare chromatin-accessibility
profiles across broad cell groups. To make this object, 600 cells were
randomly sampled for each cohort-level cluster, and the resulting set
of cells was used for merging, applying the same processing steps as
described for the processing of the first pan-cancer merged object
(Extended DataFig. 2a,d).

Cell type annotation of snATAC-seq and snMultiome-seq data.
For snMultiome-seq samples, cell labels were taken directly from
snRNA-seq sample annotations. For regular snATAC-seq, the cell
types of samples were first annotated with cell type label transfer

using functions from Signac and Seurat. First, we quantified chro-
matin accessibility associated with each gene by summing the reads
overlapping the gene body and its upstream region of 2 kb, therefore
creating the gene by cell matrix. Coordinates for the genes were used
from the Ensembl database v.86 (EnsDb.Hsapiens.v86 package). We
next performed log-normalization of the resulting matrices using the
NormalizeData function. The integration of paired snATAC-seq and
sc/snRNA-seq datasets was performed using the FindTransferAnchors
function with the canonical correlation analysis option for the dimen-
sionality reduction. We then used the TransferData function to transfer
celltypelabels fromthe sc/snRNA-seq dataset to the snATAC-seq data-
set using the obtained set of anchors from the previous step. The cell
types were then re-evaluated at the cancer-type-merged object level,
where, for each cluster, the cell type label was assigned by the most
abundant cell typein that cluster. Cancer cell type annotation was also
validated using inferCNV results (Supplementary Fig. 2b). Detailed
normal epithelial cell type annotation was performed in sc/snRNA-seq
space first. Then, for snMultiome-seq samples, cell labels were directly
taken from snRNA-seq annotation and, for regular snATAC-seq samples,
cell types were annotated with cell type label transfer using functions
from Signac and Seurat.

Inference of closest normal cell type by tumour-normal association
analysis. We set out to determine the CNCs for 10 cancer types
(allexcept MM due to the lack of resolution, see below) that contained
sufficient numbers of cells from 2 to 7 normal tissue cell types per can-
cer type. We divided the BRCA cohort samples based on basal versus
non-basal subtypes as the two subtypes were reported to have dif-
ferent cells of origin™7. To determine a CNC for each cancer, we did
the following. We used a combined set of tissue- and cancer-specific
DACRs (Supplementary Table 2a) or DEGs (Supplementary Table 2b)
for snATAC-seq- and snRNA-seq-based calculations, respectively. For
the resulting sets of genes and open chromatin regions, we calculat-
ed the average expression or accessibility for the pooled cells from
the selected normal (potential cell of origin) cell types (Fig. 1c and
Extended DataFig. 4a), and cancer cells from each sample separately.
We next calculated the Pearson correlation coefficient between each
tumour and selected normal cell types fromits tissue. Both data types
produced similar patterns (Fig. 1c and Extended Data Fig. 4a), and we
considered the cell type to be a CNC if it had a higher median of cor-
relation coefficients across tumour samples based on snATAC-seq data
(Supplementary Table 2d).

On the basis of the above analysis, we defined CNCs for 10 cancers,
and they were consistent with those reported in the previous stud-
ies: luminal mature cells for BRCA of non-basal subtypes™; luminal
progenitor cells for BRCA of basal subtype™”; ductal-like-2 cells for
PDAC™7¢"7; distal stem cells for CRC®; secretory endometrial epithelial
cells for UCEC® and OV; normal squamous cells for HNSCC and CESC;
melanocytes for SKCM; proximal tubule cells for ccRCC®*#**; and OPCs
for GBM®**%, For MM, we used normal B cells as the CNC". B cells are
believed to acquire the initial CNV and structural variants during the
class-switch recombination and somatic hypermutation processin a
germinal centre. These abnormal B cells are believed to further dif-
ferentiate into plasma cells and give rise to MM". We have significantly
more B cells than normal plasma cells in our dataset and, as the initial
tumorigenic events seemto occurinBcells, they were used asthe CNC.

Identifying DACRs using snATAC-seq data. To perform analysis of
differentially DACRs, we used the FindMarkers function of the Signac
package (v.1.3) with logistic regression and the fraction of fragments
in peaks used as a latent variable to reduce the effect of different
sequencing depths across cells. P-value adjustment was performed
using Bonferroni correction using all peaks in the dataset. We used the
same groups of cells that were used for the identification of DEGs in the
respective comparisons. To calculate the fold change for all DACRs, we
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used an improved version of the FoldChange function in the Signac
package (v.1.8).

First, toidentify tissue- and cancer-cell-specific DACRs, we compared
cancer cellsfromeach tumour type to the combined set of cancer cells
fromall other tumours, using the merged pan-cancer object with cancer
and selected normal cells. The following additional parameters were
specified for the FindMarkers function: min.pct=0.1, min.diff.pct=0,
logfc.threshold=0 and only.pos=T. ACRs that had inconsistent fold
change direction between Signacv.1.3 and v.1.8 (n = 38) were removed.

Next, to identify cancer cell-specific DACRs (Fig. 1d and Extended
DataFig. 4b), we compared cancer cells from primary tumours with
their closest normal cell types (CNCs; Fig. 1c) for each cancer using
cohort-level merged objects for 9 out of 11 cancers for which CNCs were
available. For HNSCC, we used the CESC/AD-HNSCC merged object that
has normal squamous cells for this comparison (CNC for HNSCC) and,
for OV cancer, we used the merged UCEC-OV object that had secretory
endometrial epithelial cells (CNC for OV). Furthermore, we specified
the following parameters for the FindMarkers function: min.pct=0.05,
min.diff.pct=0, logfc.threshold=0 and only.pos=F. Furthermore, we
wanted to exclude DACRs that were probably affected by CNVs. For
this, we annotated DACRs with their closest genes (using the ChiPseeker
package, as described above) and then calculated CNV scores for those
genes using inferCNV results. CNV scores were calculated as the frac-
tion of cancer cells per cohort that had that gene amplified or deleted
(AMP and DEL scores, respectively). We then filtered DACRs using the
following criteria: with log,[FC] > 0 if AMP > 0.25 and for DACRs with
log,[FC] < 0if DEL > 0.25.

Finally, to identify DACRs associated with metastasis, we com-
pared cancer cells from primary tumours to cancer cells from meta-
static tumours from 4 cohorts (CRC, PDAC, SKCM and UCEC), using
cohort-level merged objects. The following parameters were specified:
min.pct=0.01, min.diff.pct=0, logfc.threshold=0 and only.pos=F. To
select the DACRs for plotting (Extended Data Fig. 8a), we also calculated
the sample-level fold change between cancer cells from each metastatic
tumour and pooled cancer cells from all primary tumours of the same
cancer. We further prioritized the top 200 DACRs, first by the highest
fraction of metastasis samples with a positive fold change and then by
the mean fold change across the samples.

Pathway enrichment analysis in DACRs. To calculate pathway
activity from DACRs (Fig. 4d and Extended Data Fig. 4f), we used
cancer-associated pathways from the hallmark gene sets of MSigDB"".
We used the over-representation analysis function forafrom the fgsea
package (v.1.24.0) to perform hypergeometric tests with the universe
set as all unified peaks detected. DACRs with positive fold changes
in each cancer type were selected and then further filtered to have a
positive fold change in at least 50% of the samples in the cancer type.
Toensure abalanced comparison between cancer types, the number of
DACRsusedinthe analysisis capped at the top 1,000 per cancer typein
Extended DataFig.4fand thetop 5,000 per cancer typeinFig.4d onthe
basis of fold change. Each list of DACRs from a cancer type was tested
with each gene set and the FDR was calculated for multiple-testing
correction. The FDR of each test and the number of genes associated
with DACRs in the test is reported in the corresponding bubble plot.
The total numbers of DACRs associated with any genes in the gene set
across cancer types are reported in the bar plots.

Visualizing the coverage of snATAC-seq data. For snATAC-seq cover-
age plots, we used the CoveragePlot function from the Signac package.

Calculation of TF motif scores using snATAC-seq data. To evaluate
TF-binding accessibility profiles in the snATAC-seq data, we used the
chromVAR tool (v.1.12.0)%*¢, which calculates biased-corrected devia-
tions (TF motif scores) corresponding to gain or loss of accessibility
for each TF motifrelative to the average cell profile. We ran chromVAR

using wrapper-functions from the Signac package with the default
parameters and the JASPAR2020 database. Mapping of the TF motifs to
the DACRs was performed using the motifmatchr R package. To identify
TFswith differential activity between cell groups of snATAC-seq data, we
used atwo-sided Wilcoxon rank-sum test for the whole set of TFsin the
assay, subsequently applying FDR correction to the resulting Pvalues.

Identifying differentially accessible TF motifs using shATAC-seq
data. We performed analysis of differentially accessible TF motifs
(DAMs) using chromVAR scores for the following comparisons: primary
cancer cells from each cancer cohort versus pooled primary cancer cells
fromall other tumours (Supplementary Table 4d), primary cancer cells
versusrespective CNC (Supplementary Table 4e) and metastatic cancer
cells versus primary cancer cells (Fig. 4aand Supplementary Table 6d).
For all DAM analysis, we used scores calculated on merged pan-cancer
objects containing cancer and selected normal cells. To perform DAM
analysis, we used atwo-sided Wilcoxon rank-sumtest between the corre-
spondinggroups, subsequently applying FDR correctionto theresulting
Pvalues. For metastasis-specific TFs, we also used results of differential
regulons obtained from SCENIC (based onsc/snRNA-seq data). Differen-
tial regulons were calculated using a two-sided Wilcoxon rank-sum test
between the same groups of cells, and then applying FDR correction.
Weselected only those TFs that were significant (FDR < 0.05) inboth the
DAM and the regulon analysis, and also required them to have a score
change in the same direction between the same cell groups. Finally,
we calculated the expression score as the absolute value of expression
log,[FC] between the metastatic and primary cancer cells using per
sample average values, also requiring the same fold change direction
asthe direction of the score difference for the same TF (Fig. 4a).

Annotating genomic regions with cis-regulatory elements. Open
chromatinregions were annotated with cis-regulatory elements from
the geneHancer Regulatory Elements Elite list for hg38% from the
Genome USCS browser (last updated version, 2 September 2018).
Genomicregions of geneHancer enhancers and promoter/enhancers
were overlapped with a minimum overlap of 400 bp using the findO-
verlaps function from the IRanges R package. We also downloaded
scEnhancer enhancers fromall tissues and overlapped them with open
chromatin regions the same way. Moreover, we downloaded inter-
actions between GeneHancer regulatory elements and target genes
from geneHancer Interactions Double Elite list (last updated version,
15January 2019). Region-to-gene links were then annotated by presence
inthe geneHancer Interactions Double Elite list.

Annotating genomic regions with public ChIP-seq datasets. First,
we identified each JASPAR2020 TF motif in every open chromatin
region using the function matchMotifs from the motifmatchr (v.1.12.0)
R-package. We next downloaded ENCODE ChIP-seqhg38bedfiles for
allavailable TFs (download date, 28 January 2022). We then overlapped
TF-binding ChIP-seq regions with the corresponding TF motif coor-
dinates in our chromatin regions set using the findOverlaps function
fromthe IRanges R package with minimum overlap equal to the length
of the motif. Ifagiven TF motif fully overlapped with a ChIP-seq-based
binding region of the same TF, then we labelled this motif as being
supported by ChIP-seq data.

Confirming tissue- and cancer-cell-specific TFs using published
chromatin accessibility datasets. We collected the sc/snATAC-seq
or bulk ATAC-seq studies with relevant differentially expressed TF
analysis from published literature, including BRCA¢, MM®, ccRCC®°,
PDAC?, pan-organ chromatin accessibility® and the bulk ATAC-seq
study in human cancers®. For BRCA, epithelial cells were compared
to endothelial cells, fibroblast or immune cells, and the upregulated
TFs were identified. In MM, fold change expression of TFs between
myeloma and plasma cells was calculated to identify upregulated TFs



inmyeloma cells. For ccRCC and PDAC, the fold change expression of
cancer-specific TFs between cancer cells and normal cells was calcu-
lated toidentify upregulated TFsin either cancer cells (cancer-specific
TF) or normal cells (tissue-specific TF).

Moreover, the sc/snATAC-seq dataset from the pan-organ chromatin
accessibility study was used to confirm cancer and tissue-specific TFs.
Therelevant cell types were annotated with their relevant disease code
as the CNCs of the cancer. For example, mammary luminal epithelial
cells to non-basal BRCA, mammary basal epithelial to basal BRCA,
keratinocyte to HNSCC, colon epithelial cells to CRC, enterocyte to
CRC, colongoblet to CRC, SIgoblet to CRC, melanocyte to SKCM, acinar
to PDAC, ductal cell to PDAC, astrocyte to GBM, oligodendrocyte to
GBM, oligo precursor to GBM and plasma cells to MM. The tissue and
cancer cell-specific TFs highly expressed in the corresponding cell
populations were then identified.

Finally, the bulk ATAC-seq dataset from human cancers® was used to
determine whether the tissue and cancer-specific TFs are the markers
for the corresponding chromatin-accessibility-driven clusters. The
clusters were annotated as follows: Cluster 1 to ccRCC, cluster 2 to
CRC, cluster 3 to BRCA, cluster 5 to GBM, cluster 7 to SKCM, cluster 8
to CESC, cluster 14 to BRCA, and cluster 15 to UCEC.

CUT&RUN sequencing read alignments, quality control and peak
calling. To process the CUT&RUN reads, we first performed quality
controlusing FastQC to assess read quality (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc). We next used Trimmomatic®2.
Theresulting trimmed reads were subsequently mapped to the human
reference genome (GRCh38.d1.vd1.fa.tar.gz) using Bowtie2”* with the
dovetail setting. Finally, to eliminate any duplicated reads, the aligned
reads were processed for duplicate removal using Picard (http://broa-
dinstitute.github.io/picard/). To call peaks, we used MACS2 using an
IgGBAM(fileasacontrol. Then, for resulting peaks, we applied the same
filtering steps as for the peak calling on snATAC-seq data.

Direct binding profiling of TFs to target genes using ENCODE
ChlP-seq datasets. To comprehensively analyse the TF-specific
ChIP-seq datasets from ENCODE, we used SCENIC to obtain the list
of target genes for 53 tissue- and cancer-specific TFs with ChIP-seq
datasets available. Subsequently, we extracted and aggregated the
ChIP-seq peaks from multiple biosamples (Supplementary Table 5b)
using the readPeakFile function from ChIPseeker and determined
overlaps with the promoter regions of the target genes (5 kb upstream
and downstream of TSSs) using the makeBioRegionFromGranges and
getTagMatrix functions from ChlPseeker (Supplementary Table 5¢). To
annotate all of the peaks and regions, we used TxDb.Hsapiens.UCSC.
hg38.knownGenein Ensemblstyle. We also overlapped the snATAC-seq
peaksand CUT&RUN peaks with target genes using the aforementioned
methods. Finally, we visualized the average ChIP-seq, snATAC-seq
and CUT&RUN signals around the TSSs of the target genes using the
plotAvgProf function from ChlPseeker, allowing for acomprehensive
understanding of the regulatory landscape of the TFs across various
tissues, cell lines and cancer types.

Bulk ATAC-seq and snATAC-seq comparison. We compared the peak
coordinates from bulk ATAC-seq® with the peak coordinates from our
SnATAC-seq data in eight cancer types, namely UCEC, ccRCC, GBM,
BRCA, CESC/AD, CRC, SKCM and HNSCC. For each cancer cohort, com-
mon openchromatinregions were defined as the ones that had overlaps
ofatleast 50 bp (overlap >10%) with any open chromatin regions from
the bulk ATAC-seq study, and all other regions (no overlap or overlap
<10%) wereidentified as snATAC-seq-specific open chromatinregions.

Identifying snATAC-seq cell-type-specific peaks. To generate the
bar plot showing the snATAC-seq specific peaks that were found in
multiple cell types, we first used the AccessiblePeaks function from the

Signac package®* to identify accessible regions in each cell type of the
eight cancer types. We next categorized the identified peaks into two
groupsonthe basis of whether they appearedin only one cell type, such
as tumour cells, or whether they appeared in more than one cell type.
We then used the BEDtools® intersect function to compare the peak
coordinates of snATAC-seq-specific peaks with these two cell type
groups of peaks. This analysis enabled us to identify the snATAC-
seq-specific peaks that were accessible inmultiple cell types, whichwe
then used to generate the bar plot.

Overlapping chromatin accessibility peaks and ChIP-seq peaks.
To overlap snATAC-seq and ChIP-seq peaks, we used the BEDtools®®
intersect function to compare the peak coordinates obtained from
ChIP-seq® with our snATAC-seq-specific, bulk-ATAC-seq-specific and
bulk/snATAC-seq overlapping peaks. This analysis was conducted
separately for each of the eight cancer types to determine the extent
to which the identified snATAC-seq peaks represented true signals
rather than noise.

Overlapping snATAC-seq-specific peaks and fetal chromatin acces-
sibility peaks. Toinvestigate whether our snATAC-seq-specific peaks
were recurrently observed in other datasets, we compared our peak
setswith the cell atlas of fetal chromatin accessibility®. We downloaded
the master list of sites (GSE149683 File_S1.Master list_of sites.txt) and
converted the genomic coordinates from hg19 to hg38 using the UCSC
liftOver tool. We then converted the bed files to GRanges objects and
used the findOverlaps function of GRanges to determine the over-
laps between our snATAC-seq-specific peaks and the fetal chromatin
accessibility peaks.

Linking genomic regions to genes. We applied the LinkPeaks func-
tion from the Signac R package (v.1.8.0)°*°¢ on tumour cells with
snMultiome-seq data (snRNA-seq and snATAC-seq measured in the
same cell). Only open chromatin regions located within 500 kb of a
gene TSS were considered. Links were considered to be significant with
acorrelation valuer>0.05and P< 0.05. Furthermore, we followed an
established procedure® to account for diffuse correlations. Diffuse
correlations occur in genomic regions in which chromatin accessibil-
ityisgenerally high, whereby the gene expressionisincreased. It does
not necessarily relate to an increased accessibility of cis-regulatory
elements. To account for diffuse correlations, we divided each chro-
mosomeinto100 kb windows, quantified accessibility of these regions
and correlated this accessibility with expression of genes of which the
TSSiswithin500 kb. As diffuse 100 kb windows are significantly larger
than peaks (501 bp), they have accessibility coveragein more cells and,
consequently, receive higher correlation values on average. To mitigate
these differences, we z-scored correlation values for both open chro-
matin regions and 100 kb windows. We then compared z-scored cor-
relation values and retained only those predicted region-to-gene links
that had higher z-scored correlation values than the 100 kb window
that they belongto. Moreover, we reasoned that copy-number changes
are strong drivers of gene expression patterns, so it isimportant to
account for them. We used the results of inferCNV on RNA-assay for
snMultiome-seq samples and on ATAC-assay for regular snATAC-seq
samples to quantify the number of cells with a gain or amplification
of each gene and excluded those genes that are frequently amplified
(in>25% of cancer cellsand >2,000 cells). For example, on the basis of
these thresholds, the ELF3 gene was excluded in PDAC, but was retained
in BRCA, CRC,HNSCC, OV and UCEC.

Links associated with cancer transitions. To identify links implicated
incancer transitions from normal cells to primary tumour (Fig. 2d and
Extended DataFig. 5g), werequired the following: (1) the ACR in the link
to bessignificantly more accessible (log,[FC] > 0.5, Wilcoxon rank-sum
test FDR < 0.05) and (2) the gene to be significantly upregulated
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(log,[FC] > 0.25, Wilcoxon rank-sum test FDR < 0.05) in primary can-
cer cells versus their CNCs.

Enrichment of links in TF target genes. We calculated the enrichment
of genes linked to ACR containing a TF motif based on the idea that, if
agroup of genesisindeed regulated by a TF, then we should be able to
identify TF-motif-containing genomic regions of which the accessi-
bilities are correlated with expression of these genes. The working
model is based on the biology of TF activity. Namely, a TF binds to its
bindingsite nearatargetgene, indicating the accessibility of this region,
and subsequently stimulates the expression of this gene. This relation-
ship between accessibility and gene expression should be detectable
by correlation in asimilar manner as we showed above. To test wheth-
er TF target genes identified by SCENIC analysis are significantly en-
riched for genes linked to the accessibility of this TF motif, we first
sought to characterize the random background rate of gene-ACR link-
age occurrences for each regulon by performing 500 samplings of N
random-picked genes, where Nis the number of target genes in the
regulon, and then identifying the number K of genes linked to ACRs
containing the TF motif. Random genes were limited to genes expressed
ineach cancer type and were therefore different for each cancer type.
Thenullhypothesisis taken as the expectation fors(t)(lj'le number of genes
linked to a TF motif, namely the average E[K] = %. Presuming that
gene-ACR counts are normally distributed, we then used a Gaussian
curve of y=mean(K) and o=s.d.(K) for testing each respective regulon,
computing z= (M - u)/o, where M is the observed number of target
genes linked to TF motifs and converting this score to a one-sided P
value. For visualization purposes, we computed fold change %ﬂ(m
Motifs in ACRs were identified using the CreateMotifMatrix function
inthe motifmatchr R package.

Links associated with genetic drivers. To find ACR-to-gene links in
cancer driver genes we filtered links by oncogenes from a previous
study®. For visualization of accessibility and gene expression of EGFR
in BRCA basal, CESC and HNSCC cancers, we included only samples
with EGFR copy-number neutral calls from WES using the GATK pipe-
line (see above). All of the samples except for one HNSCC sample also
had neutral inferred copy-number calls for EGFR based on inferCNV
results from snRNA-seq data. This HNSCC sample with case ID P5514
showed no significant EGFR expression difference with WES-based
EGFR-copy-number neutral cases (log,[FC] = 0.08, Wilcoxon rank-sum
test Pvalue = 0.09). However, all WES-based EGFR-amplified cases
showed significant upregulation of EGFR expression compared with
EGFR-copy-number neutral cases (P5504, log,[FC] =0.13,P=3.7 x10°%;
P5216, 10g,[FC] =2.2, P=1.7 10" P5379,l0g,[FC] = 1.3, P= 4.6 x10°5%;
P5576,l0g,[FC]=3.9, P=9.3 x107®). As the GATK pipeline did not call
EGFR copy-number gainin P5514 and we did not observe upregulation
of EGFR expression in this case, we included it in Fig. 5c.

HPV status assignment. To detect HPV reads in the sample, we fol-
lowed a series of steps. First, we constructed a genome database for
known HPV genotypes. We next extracted the unmapped reads from
the snRNA-seq BAM files that did not align to the human genome. We
then used BWA® to align these unmapped reads against the constructed
virus genome database. Finally, we identified the HPV reads from the
alignment results. Detailed source code for this process can be found
at the GitHub repository (https://github.com/ding-lab/VirusScan/
tree/simplified).

Survival analysis. RNA-seq expression data for TCGA samples were
obtained through the cBioPortal (https://www.cbioportal.org/),
along with clinical information from the TCGA Pan-Cancer Clinical
Data Resource (TCGA-CDR)”. The regulons generated in this study
(see the ‘Gene regulatory network analysis using SCENIC’ section)
were used to calculate regulon activity on the basis of bulk RNA-seq

expression data for samples from TCGA cohorts (HNSCC, GBM, READ,
COAD and PAAD) using the AUCell (v.1.19.1) R package (Supplementary
Table 9a).

Samples were grouped on the basis of regulon activity scores: those
with scores of higher than the median as the ‘high group’ and those
with scores <median as the ‘low group’. The survival probability of
progression-free survival/overallsurvivaland Kaplan-Meier curves were
then calculated for both groups using the survival (v.3.2.7) and survminer
(v.0.4.9) Rpackages. We also performed Cox proportional hazard models
todiscernthe regulons that mostsignificantly andindependently influ-
enced patientsurvival. Significant regulons identified from Kaplan-Meier
curves were added tothe models to ascertain their distinct contribution
to survival, after adjusting for age, sex and HPV status.

Identifying regulons significantly associated with HPV infection.
To assess differences in regulon activity between HPV* and HPV~
HNSCC samples, we used the Wilcoxon rank-sum test for compari-
sons to identify HPV-status-associated regulon changes. We further
validated the HPV-status-associated regulons in the TCGA-HNSCC
cohortusing the calculated regulon scores (Supplementary Table 9a).

Making case-level objects of paired primary/metastatic samples
for EMT analysis. In our cohort, we had nine patient cases with both
primary and metastatic tumours in UCEC and CRC cancers. For the EMT
analysis, we created case-level snATAC-seq objects, including cancer
cellsfromaprimary sample, cancer cells from ametastatic sample and
normal epithelial cells from a primary sample (if available). These cells
were renormalized and clustered similar to the approach described
above (using 2:30 LSIcomponents for the runUMAP and FindNeighbors
functions). Clustering resolution was adjusted per case to prevent
overclustering. For UCEC cases CPT1541DU and CPT704DU, the reso-
lution was 0.2, for CPT2373DU and CPT4096DU it was set to 0.1, and
for CPT4427DU, it was 0.3. For CRC cases CM1563C and CM663C, the
resolutionwas 0.1and, for CM268C and CM618C, it was 0.2. Few cases
showed small clusters of cells with increased accessibility of immune
markers, suggesting that they are probably doublets with immune
cells; they were therefore marked as other and were not included in
the downstream analysis.

Trajectory inference for EMT analysis of paired primary/metastat-
ic samples. For the trajectory analysis of the nine paired primary/
metastatic snATAC-seq samples, we used the slingshot R-package
(v.2.5.1), which implements a top performing trajectory inference
method in a large trajectory inference benchmark®?, Slingshot
requires two inputs: dimensionality reduced data and a clustering of
cells. For the clustering of cells, we used the cell type annotations (nor-
mal, primary tumour and metastatic tumour) in all cases as input,
specifying the normal cluster as the starting cluster or primary tumour
ifnormal cells were not available in the sample. For the dimensionality
reduction, we used a supervised method known as between cluster
analysis (BCA), which uses cell type information in addition to the
underlying data to reduce the data in a way that is more amenable to
trajectory inference by better preserving the relationships between
celltypes. Concretely let X € R"*Pdenote an snATAC-seq measurement
where n is the number of cells and p is the number of peaks
and a clustering of the cellsC={C,, C,, ..., C¢} into K cell types. Let
= ﬁ z[_eck X; € R denote the centroilg of cluster C;and define
the between-cluster variance VasV; = tr(zk:1|Ck|kapk) =tr(Sz(X, 0))
,where Sz(X, C) € RP*? is known as the between cluster scatter. The
objective of BCAis to find a set of r= K -1 orthogonal axes held in the
columns of W € RP*" that best preserve the between cluster variance;
concretely, BCA solves the following optimization problem

max tr(W'Sz(X, C)W). The solution (optimal W*) is given by the larg-
wiw=1,

estreigenvectors of Sy(X,C), with the corresponding BCA embedding
corresponding to Y, = XW*. For every case, we gave Slingshot the first
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two components of BCA as input (we found in practice that this per-
formed the best qualitatively as opposed to using all K —1components).
As the between-cluster variance is a supervised statistic
(requires knowledge of a cell type clustering), it preserves relationships
between cell types, which is desirable for trajectory inference. Note
that BCA works only for datasets with three or more clusters when
wanting to produce a visualization or input to a trajectory inference
method.

To control for the confounding effects of total read count, we gave
asinputto BCA the 2:50 LSIcomponents and either the cell type anno-
tation (normal, primary or metastatic cancer cells) or the case-level
clusters (Extended Data Fig. 8b). We gave BCA the cell type annotations
as the clusters when there were normal cells present in the sample
(K=3); otherwise, we used the case-level clusters. Moreover, both case
CM1563C and case CPT2373DU had only two cell type clusters (pri-
mary and metastasis) and two or fewer case-level clusters; we therefore
gave Slingshot as input the 2:50 LSI components for CM1563C and
CPT2373DU, as BCA returns only a one-dimensional embedding for
both of these samples.

Slingshot outputs a pseudotime (areal number modelling the under-
lying biological progression) for each cell. For each case we correlated,
using Pearson’s coefficient, the pseudotimes with each of the 663 TF
motif scores obtained from our previous analysis and adjusted the
corresponding P values for each correlation using the Benjamini-
Hochberg method to control for multiple tests. We used an FDR thresh-
old cut-off of 0.05 (Supplementary Table 7).

Identifying enriched metastatic pathways from ACRs. For the nine
paired primary-metastatic samples (4 CRC and 5UCEC), we identified
significant pathways that are characterized by DACRs across primary
and metastatic cancer cells. Weidentified two different sets of primary-
metastatic DACRs: regions that were significantly associated with TF
scores and regions that were significantly associated with pseudotime
identified in the trajectory analysis filtered to contain only primary
and metastatic cells. The rationale here is that both the pseudotime
and the TF motif score are relevant to metastatic progression of pri-
mary tumour cells. Thus, regions that are significantly associated with
either feature are likely to have arole in the metastasis of tumour cells.
We used lasso regression as implemented in the R glmnet package'®
to identify which peaks were significantly associated with either TF
motif score or pseudotime. That is, we used either the pseudotime
or the TF motif score as the response variable and assigned all of the
chromatin regions as covariates. We chose lasso for two reasons, as
opposed to linear regression or ridge regression. First, there are far
more peaks than cells; therefore, linear regression cannot be applied.
Second, we wanted a sparse set of peaks that are more likely to be part
of the metastatic process. We considered peaks to be significantly
associated ifthey have anon-zero lasso regression coefficient. We chose
the value of the lasso regularization parameter lambda by performing
tenfold cross-validation using cv.glment, subsequently choosing the
lambda that minimizes the cross-validation errorin all of the samples
exceptin CPT2373DU, for which we saw empirically better results by
choosing the minimum lambda across the default giment lambda
sequence.

The genes related to the pseudotime DACRs were collected for
gene-set over-representation analysis (Extended Data Fig. 9h) using
the database of hallmark MSigDB pathways™. The significant pathways
were obtained by running a hypergeometric test using clusterProfiler
listing the pathways with a varied range of FDRs. We performed an
identical analysis for the DACRs associated with the activities of TFs
involved in metastasis (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Sequencing data are part of Human Tumour Atlas Network (HTAN)
dbGaP Study accession phs002371.v3.p1 and Clinical Proteomic
Tumour Analysis Consortium (CPTAC) dbGaP Study accession
phs001287.v17.p6. Data can be accessed through the HTAN DCC Portal
(https://data.humantumoratlas.org/) under the HTAN WUSTL Atlas.
Sequencing data for CPTAC ccRCC and GBM samples are available
through the NCI Genomic Data Commons (GDC) under the CPTAC3
project. Matrices for CPTAC GBM and ccRCC samples and CUT&RUN
data are available from the Gene Expression Omnibus (GEO) under
accessionnumbers GSE240822 and GSE240699, respectively. GRCh38
references used for sc/snRNA-seq (refdata-gex-GRCh38-2020-A) and
snATAC-seq and snMultiome-seq (refdata-cellranger-arc-GRCh38-
2020-A-2.0.0) analyses are freely available from the 10x Genomics
website (https://support.10xgenomics.com). The reference GRCh38
genome (https://api.gdc.cancer.gov/data/254f697d-310d-4d7d-a27b-
27fbf767a834) used for WES and CUT&RUN read alignment is available
from GDC (https://gdc.cancer.gov/about-data/gdc-data-processing/
gdc-reference-files).

Code availability

Many bioinformatics tools were used in the course of this work. All
tools writtenand/or published by the authors are freely available at our
public GitHub repository (https://github.com/ding-lab/), including the
somaticwrapper variant calling pipeline (https://github.com/ding-lab/
somaticwrapper), the code for the mutation mapping from bulk to
single cells (https://github.com/ding-lab/10Xmapping), the pipeline for
HPV status assignment (https://github.com/ding-lab/VirusScan/tree/
simplified) and COCOON (https://github.com/ding-lab/COCOONS).
Othertools used here are available from their associated authors. The
scripts and additional information for reproducing analysis and fig-
ures are available at our GitHub page (https://github.com/ding-lab/
PanCan_snATAC_publication).
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Extended DataFig.1|snATAC-seq and sc/snRNA-seq dataoverview.

a, Overview of the cohortand sample availability, indicating 11 different cancer
types,3sampletypes (NAT - normal adjacent tissue, Primary - primary tumour,
Metastasis - metastatic tumour), and 3 data types collected for each sample.
Thebar plotannotation on top of the heatmap providesinformation about the

number of peaks detected in each sample. b, UMAPs of 11 cancer types based
onsnATAC-seq chromatin accessibility. Each cellis colour-coded by cell type to
visualize the differencesin chromatin accessibility. c, UMAPs of 11 cancer types
based onsc/snRNA-seqdata. Each cellis colour-coded by cell type to visualize
thedifferencesin gene expression.
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Extended DataFig. 3 | Similarity patterns betweensquamous cancers, and
OVand UCEC. a, tSNE-plot based on top tissue- and cancer cell-specific DACRs
from Extended Data Fig. 2g showing tumour samples clustering. CESC/HNSCC
and UCEC/OV clusters of samples are highlighted with shading. b, Dot plots
showing squamous and adenocarcinoma markers snRNA-seq expressionin

CESC/AD and PDAC samples. Markers were obtained from'®., ¢, snATAC-seq
based coverage plots showing examples of pan-cancer ACRs: KRT6A (left) is
shared between CESC and HNSCC, and PAX8 (right) is shared among UCEC, OV,
CEAD, and ccRCC cancer types.



Article

L Closest normal to cancer cells (snRNA-seq) Sampletype @ Met m Tumor
. sroa, boso [T [—
2075
o
i R
2 050 - L " [ .
8 1 ' [ . ! % ¥
L s P4 ¢ L It " g
2025 n o3 8 21 AL l’ a -'2—% &4l 5 HeE
S 0 o . 1’ 3 1’— haMﬁr,‘%ﬁv } kY . % - ‘** l ol
s Wk g i,.);"'?"' PSS Ellaraviallesis AR 8
£ 0.00 "‘ 3 ? T (P4 ¥ L .!' . &-' 2 w1
8 ¢ % Belspljt™’ :
~ .
o R WL s Wl S 5 8 + T A 8 2 T ® 8B 8 8 Y B L 8 2 O« Q@ QO TFLETO <]
PP BrrEREgEY RRTEEEIIIRIGiiioiaiiiiifiiiae
$%= 323 <§cts5F5035iggacoscsgsEsdd8gereriee 523§
SET 2ms 3 85538 £ EEEmewwwmgw%gasvﬂg monggggi
£ T £ ok E§o3uU WIIFI o>n>52 358 82 £8 =
§EEBEE 3 < g B o . gﬁsﬁggﬁgﬁ 5% 8 3 §E%§§~, §
EES &7 E g § 88¢g 45§65525 25 58 55 58¢ 05 ¢
3 k| ? = = & & =z "2 eE ©0 a 5 2
T b 2 8 E 3
<1 a a a 3 2
£ i o
. < Percent Expressed -15 -1.0 -05
b DACRs down-regulated in cancer cells compared to CNC . 005 O 015 Avg log2FC € Primary tumor
Shared PDAC cRc MM BRCA, basal oS CNC DACRs
HNSCC{ e 00 ) >
CESC1 @ © o ©
PDAC{O®00000 OC0@®ce |esecsee

e00e0e® 0000
(4]

20K

| 10K

BRCA
BRCA Basal

Proportion
0.50

DACR and DEG direction

Not matching
Down peak, down gene expression
Up peak, up gene expression

BRCA, basal
.

snRNA log2FC

rho=0.43
p=1.23e-113

EpiMap
Annotation
L Enhancer
M Promoter
' Not annotated

o o /
o et NRN1
rho=025 -2 *® rho=0.43 L =031 *a =
= P 26026 P p=5826210 2 o edsehio 4 119038808
-25 00 25 50 -50 -25 00 25 50 -4 0 - 8 -25 00 25 50

_____ov____%

DIP2C

UCEC

DIP2C
P

4

Hallmark enrichment of primary tumor vs normal DACR

0
UV_RESPONSE_DN

HYPOXIA
TNFA_SIGNALING_VIA_NFKB
APICAL_JUNCTION
EPITHELIAL_MESENCHYMAL_TRANSITION
ESTROGEN_RESPONSE_EARLY

T

INFLAMMATORY_RESPONSE
MYOGENESIS
ESTROGEN_RESPONSE_LATE
MITOTIC_S|
KRAS_SIGNALING_UP
KRAS_SIGNALING_DN

IL6_JAK_STAT3_SIGNALING
IA_RESPONSE
EN_RESPONSE
DIPOGENESIS
REACTIVE_OXYGEN_SPECIES_PATHWAY
PROTEIN_SECRETION -

COMPLEMENT

P
ALLOGRAFT_REJECTION
CHOLESTEROL_HOMEOSTASIS
PIBK_AKT_MTOR_SIGNALING
ANGIOGENESIS

-
2 4 8

INTERFERON_GAMM
ANDROGH

-log10(FDR) 3
Gene Count

10

1000
BE 750
9% s00
*#0 250

',

L

£l

Ill"!"ll"ﬂl H

MM
ov
PDAC
UCEC

CRC

6
20 30

BRCA
ccRCC

Extended DataFig. 4 |See next page for caption.
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Extended DataFig. 4 |Characterization of cancer cell-specific DACRs.

a, Violin plots showing distributions of Pearson correlation coefficients
between cancer cells from each tumour and normal cell types of tissue of origin
using snRNA-seq data. For each cohort, celltypes are ordered by increasing
median correlation coefficientacross samples. b, Bubble plot showing top
down-regulated cancer cell-associated DACRs, including shared and cancer-
specific DACRs, identified by comparing cancer cells vs. CNC. Bubble size
shows percentage of cancer cells with accessible DACR and colour conveys log2
fold change (FC). X-axis shows the nearest gene of each DACRs. Genes are
grouped by those shared between cancers and those specific to cancer types.
Cancer-specific DACRs were selected based on specificity and by FCin each
cancertype (columns), orif they were shared by maximal number of cancers
(shared). Negative log2(FC) is shown if ACR was accessible in >0.05 of cancer
cells. Genes’ DACRs that overlap promoters and enhancers from the EpiMap
databaseare highlighted inbold. ¢, Bar chart shows counts of primary cancer
cellsvs. CNCs DACRs broken down by EpiMap annotation. 53% of DACRs are
annotated as enhancer regionsand 37% as promoter regions, the rest are not
annotated in EpiMap. d, Bar plot showing the proportion of primary cancer
cellsvs. CNCs DACRs (FDR < 0.05) for which the nearest gene definitively

changes expressionin the same direction (includes significant RNA hits at

FDR < 0.05and suggestive RNA hits at FDR < 0.3, absolute log2FC > 0.05),
orgeneindicatively changes expressioninthe same direction (absolute

log2FC < 0.05). DACRs and nearby genes that do not matchin the direction of
accessibility/expression are marked as ‘not matching’. e, Scatter plots showing
correlation oflog2FC of DACRs and log2FC of DEGs of nearby genes. Spearman’s
rhovaluesand two-sided p-values are shown. Dot colour indicates -logl0(FDR).
Thegrey band corresponds to the 95% confidence levelinterval for predictions
fromthelinear model. f, Bubble plot showing significant and suggestive

(FDR <20%) hallmark pathway enrichments from upregulated cancer cell-specific
DACRsin panel Fig.1d. Bubble size and colour convey gene count and log10 of
FDR, respectively. The total number of DACRs per cancer type in the analysis is
cappedat1,000 by log2 fold change to ensure balanced comparison (top bar
plot). Total number of DACRs annotated in each hallmark pathway are shownon
thebarplotontheright.g, Coverage plots showing chromatinaccessibility in
genomicregions containing genes ABCCI and VEGFA for neoplastic cellsand
CNCineachcancertype. DACRs are highlighted and gene expression levels
show concordance with chromatin accessibility (right).
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Extended DataFig. 5|See next page for caption.

-2 -2



Extended DataFig. 5| Cancer cell-specific enhancers. a, Bar chart showing
proportions of ACR-to-gene links found in GeneHancer Interactions database
(red andblueindicate found and not found, respectively). ACR-to-gene links
were pre-filtered by ACRs overlapping with an element from GeneHancer
regulatory elements database. b, Coverage plot of the ASAP2regionin PDAC
primary cancer cells and ductal-like-2 normal cells. Genomic regions highlighted
inyellow correspond to EpiMap enhancers. Zoom-in views on enhancer and
promoter regionsonthe right side provide finer detail. Violin plot of ASAP2
RNA expression appears at far right (log2(FC) = 0.71, Wilcoxon rank-sum test
two-sided p-value =1.57"%). ¢, Kaplan-Meier plot of disease-free survival of
TCGAPDAC patients stratified by ASAP2 high and low expression (high ASAP2,
n=30;lowASAP2,n =38, Log Rank Test p-value < 0.001). High ASAP2 group was
defined as the top 50% quantile of RNA expression and low ASAP2 as the bottom
50%. p-value was calculated using the log-rank test. d, Coverage plot showing
ATAC-seq accessibility of PPARGregionand enhancers linked to PPARG
expression. Both linked enhancers are DACRs between primary PDAC cancer
cellsand pancreatic ductal-like 2 cells. Violin plot on the right side indicates
PPARGRNA expressionin the same cells. e, Scatter plots showing CRISPR
PPARGKO effect (Y-axis) in pancreatic cancer cell lines vs PPARG expression
(X-axis). Data was obtained from DepMap portal. Pearson’s correlation
coefficientandits p-value are shown. f, Coverage plot showing snATAC-seq

accessibility of FLNBregionand enhancers linked FLNB expression. All linked
enhancers are DACRs between primary PDAC cancer cells and pancreatic ductal-
like2 cells. Violin plot on the right side indicates FLNBRNA expressioninthe
same cells. g, Heatmap of ACR-to-gene links connecting regions with increased
accessibility in BRCA basal cancer cells with genes with increased expression
inBRCA basal cancer cells. Heatmap shows average normalized and scaled
snATAC-seq and snRNA-seq values aggregated by sample for cancer cells and
by cell type for normal breast cells. snATAC-based heatmap is clustered using
Ward’s minimum variance method (Ward.D2 fromR) and Euclidean distance,
snRNA-based heatmap columns and rows follow respective snATAC-based
heatmap column and row orders. Label key: dELS - distal cis-regulatory regions
(CREs) with enhancer-like signatures, pELS - proximal CREs with enhancer-like
signatures, PLS - CREs with promoter-like signatures. h, Coverage plot showing
snATAC-seq accessibility of VEGFAregion and enhancers linked to VEGFA
expression. Alllinked enhancers are DACRs between primary BRCA basal
cancer cellsand luminal progenitor cells. Violin plot on theright side indicates
VEGFARNA-seqexpressioninthesamecells. i, Coverage plot showing snATAC-
seqaccessibility of ENIregion and enhancers linked EN1expression. All linked
enhancersare DACRs between primary BRCA basal cancer cellsand luminal
progenitor cells. Violin plot on theright side indicates ENI RNA-seq expression
inthesamecells.
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Extended DataFig. 6 | Tissue-and cancer cell-specificregulons. a,
Schematic showing regulonsidentified using SCENIC across 11 cancer types
(Methods). b, Box plots showing regulon activity scores and TF motif
accessibility scores for KLF3, GLI2, and FOXL1in primary PDAC cancer cells
(n=2,211forregulonactivity; n=30,428 for TF motif) and normal pancreas
ductal-like 2 cells (Ductal-like 2 n = 744 for regulon activity; n=1,652 for TF
motif). ¢, Box plots showing regulon activity scores and TF motifaccessibility
scores for FOSL1in PDAC (n =2,211) increase compared to those in squamous
cancers (CESCn=2,200; HNSCC n = 3,462) and normal squamous cells
(n=143).d, Box plots showing GATA6 regulon activity scores decreasingin CRC
(n=446),PDAC (n=2,211),0V (n=1,400),and UCEC (n=800) cancer cells

compared to respective CNCs (Distal stem cells n=184; Ductal-like 2 n=744;
Secretory endometrial cellsn=202).Inthe b-d box plots for cancer cells are
coloured by cancer types. Wilcoxon rank-sum test FDR adjusted two-sided
p-values are shown (Supplementary Table S4c, e). Box plot center line
correspondsto the median, the lower and upper hinges correspond to the first
and third quartiles. The upper or lower whiskers extend from the hinge to the
largest or the lowest value no further than 1.5*IQR from the hinge (where IQR is
theinter-quartilerange). e, Bubble plot showing pathway enrichmentin target
genes oftissue and cancer cell-specific regulons. Target genes were filtered out
by tissue/cancer cell-specific DEGs in the respective cancer type
(Supplementary Table 2b).
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Extended DataFig.7|Regulontargetgenesvalidation.a,Barplotsummarizing  proportionisexpressedasapercentage onthey-axis.b, TSS plotsshowingthe
the proportion of target gene promoters (within upstreamand downstream 5 kb presence of aggregated ChIP-seq peaks (ENCODE) and snATAC-seq peaks of

of TSS) that overlap with TF-specific ChIP-seq peaks for 53 TFsidentifiedinFig.3a.  targetgenes.c, TSS plots showing the presence of ChIP-seq peaks (ENCODE)
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proportion of target gene promoters that overlap with ChIP-seqpeaks. The for CTCF’starget genesin CAKI (left), MCF-7 (middle), and U251 (right) cell lines.



Article

a Metastasis vs Primary DACFl

| &H

|||lu

(s nATAC-seq)

g"éﬁ%:ﬂw
Mi
i

F| AR
Tl
W'r;

IE PDAC
N

ﬁ lﬂ")}bq ,ti
.vj'r‘; ‘pl‘q{“‘ e

L A

TN ! ! ‘ 1 -r"ﬂ' i
! il L ! M,q. z: il
B i 1 | F-‘;H ‘{
‘ a i 1L ol W i W 1y |‘| | L ‘ll
) A ﬁ-‘\l"ﬂ I’ i l 1 qﬂ Tk
A WWE' i
ﬁ N“ﬁ"‘ Uit H At o T i 'd ek il | H it
S Zr- - -QF — ""IZ -~
2 NN A PO S s 2 MOA MR I N D FOR AT NOBT s BN o <
E%EE%%E%EED%%’&EE%%@‘J%"%EEE %EE&“EEEE&gé‘z‘%E! %8§$§
EEEI&_Iju:E 85:,5’4 U)ZZ% EE !5# QL= (:EZ%I_IE m(D:(n—§ 88 %
Z = s (5} T F 9 o] a @
-2 0 2 [
Peak accessibility M o Sample type ,?,‘,?2}3‘{3,}:‘0’}'°’
c

CM663C

CM618C

CM618C

CM268C Cell count,
log2
12
CM1563C @
CPT2373DU Cell type

Primary tumor
Metastatic tumor
Normal

CPT1541DU
CPT4096DU

CPT704DU

CPT4427DU

C1 C2 C3 C4 C5 C6 (7

Extended DataFig.8|snATAC-seqbased differencesbetween primary and
metastatic cancer cells. a, Heatmap showing top 200 up-regulated DACRs
associated with the transition from primary to metastasis across four cancer
types. Labels on the X-axis show the nearest genes to DACRs which also have
significantly up-regulated gene expression in metastatic samples compared
to primary tumour samples based on snRNA-seq data. For each sample (rows)
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peakaccessibility was calculated as average across its cancer cells. b, Pie-charts
showing contribution of primary cancer cells, metastatic cancer cells, and
normal epithelial cells to each cluster of case-level objects (see Methods) from
SUCEC and 4 CRC cases. ¢, Pearson correlation coefficient heatmap computed
based on TF motifscores averaged per cluster and per sample, showing that
cancer cells from the same cluster tend to be similar by their TF score profiles.
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Extended DataFig.10 |Summary of somaticdrivers, druggable targets,
and prognosticsignificance. a, Summary heatmap showing the landscape of
geneticdrivers (i.e., somatic mutations, CNVs) and clinical annotation for the
samples with bulk WES available in this cohort (n =176). b, Dotplot showing
DACRsbetween TP53 missense mutantsamplesand TPS3WT, or between TP53
truncation mutants and TP53WTin BRCA, using sample-level snATAC-seq ACRs
accessibilities. For this analysis we used only ACRs that were supported by TP53
ChIP-seqobtained from ENCODE?** and that also contained a TP53 binding motif.
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p-values. c, The Kaplan-Meier plots and analysis of progression-free survival in
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defined based on values above and below the median, respectively.d, A
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survival adjusted for age and sexin TCGA-HNSCC cohort. Cox proportional
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e, Bubble plotshowing druggable targets as annotated in CIViC database'*
found by DACR analysis between primary cancer cellsand corresponding
CNCs. Each dotisone DACR. X-axis shows the nearest gene. f, Bubble plot
showing druggable targets as annotated in CIViC database'®* found by DEG
analysis between primary cancer cellsand corresponding CNCs. Each dot is
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study.cgi?study_id=phs002371.v3.p1), and Clinical Proteomic Tumor Analysis Consortium (CPTAC) dbGaP Study Accession: phs001287.v17.p6 (https://
www.nchi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001287.v17.p6). Data can be accessed through the HTAN DCC Portal https://
data.humantumoratlas.org/ under the HTAN WUSTL Atlas. Sequencing data for CPTAC ccRCC and GBM samples are available through the NCI Genomic Data
Commons (GDC) under the CPTAC3 project. Matrices for CPCTAC GBM and ccRCC samples and CUT&RUN data are available from the Gene Expression Omnibus
(GEO) under respective accession numbers GSE240822 and GSE240699. GRCh38 references used for sc/snRNA-seq (refdata-gex-GRCh38-2020-A) and snATAC-seq
and snMultiome-seq (refdata-cellranger-arc-GRCh38-2020-A-2.0.0) analyses are freely available from 10X Genomics website (https://support.10xgenomics.com).
The reference GRCh38 genome (GRCh38.d1.vd1.fa.tar.gz) used for WES and CUT&RUN reads alignment is available from GDC (https://gdc.cancer.gov/about-data/
gdc-data-processing/gdc-reference-files).
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GBM and 1 NAT for ccRCC, samples sex was collected from electronic health record system. For GBM and ccRCC samples
originating from the NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC), sex information was obtained from the
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other socially relevant and PDAC samples. For BRCA, CRC, MM, and PDAC samples race and/or ethnicity was collected from electronic health record
system. For GBM and ccRCC samples originating from the NCI CPTAC, race and ethnicity was obtained from the Protein Data
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Population characteristics Our dataset comprises samples from 11 tumor types, with patients ages 24-88. Distribution of the samples across the cohorts

Recruitment

Ethics oversight

can be found in the Supplementary Table 1a and Extended Data Fig. 1a. Detailed clinical information can be found in the
Supplementary Table 1b.

Patients who fit the clinical criteria and consented to the study were selected for inclusion in the genetic and molecular
tumor analysis. GBM and ccRCC samples originating from the NCI CPTAC were part of the previous studies (Clark et al. 2019
and Wang et al. 2021). There was no self-selection bias or other biases in the recruitment of patients.

All samples for MM, OV, BRCA, PDAC, UCEC, CRC, CESC/AD, SKCM, HNSCC, as well as 2 NATs for GBM and 1 NAT for ccRCC
were collected with informed consent in concordance with Institutional Review Board (IRB) approval at the School of
Medicine at Washington University in St Louis. IRB protocols are the following: 201105374, 201108117, 201407156,
202106166, 201911095, 201102270, 201103136, and 201102312. Tumor samples were collected during surgical resection
and verified by standard pathology. GBM and ccRCC samples originating from the NCI CPTAC were part of the previous
studies (Clark et al. 2019 and Wang et al. 2021).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size

Data exclusions

Replication

Randomization

Blinding

Sample sizes were chosen based on the availability of samples collected across 11 cancer types. No specific statistical methods were used to
predetermine sample size. However, our approach ensured a good representation for each cancer type, with a minimum of 10 samples per
cancer type and a total of 225 samples for snATAC-seq, along with 206 samples for paired sc/snRNA-seq. This sample size aligns with or
exceeds that of many previously published single cell chromatin accessibility studies on the date of submission.

For the analyses results visualizations using averaged chromatin accessibilities in Fig. 1c and Extended Data Figs. 2g, 3a, 4a and 8a, cell groups
with less than 20 cells were excluded as the averaged measurements per small cell number are less reliable.

We benchmarked accessible chromatin regions (ACRs) with the TCGA pan-cancer bulk ATAC-seq study (Corces et al. 2018), finding 8-27% of
ACRs were shared between the bulk and our dataset, with the majority of ACRs being snATAC-unique (Supplementary Fig. 1a). We
investigated these snATAC-unique ACRs and found 60-75% and 74-83% of them overlapped with regions identified by ENCODE ChIP-seq data
(Dunham et al. 2012, Luo et al. 2020) and the fetal pan-organ snATAC-seq data (Domcke et al. 2020), respectively (Supplementary Fig. 1b-d).
We also reasoned that single cell resolution could result in identification of non-cancer cell ACRs and indeed snATAC-unique ACRs were found
in one or multiple cell types of tumor microenvironment (TME) (Supplementary Fig. 1e). We also observed that small proportions of snATAC-
unique ACRs (ranging from 0.01% in ccRCC to 23.5% in CESC/AD) were cancer cell-unique (Supplementary Fig. 1e). Taken together, our
snATAC-seq dataset provides a large number of reliable ACRs representing both cancer cell-specific and the TME-shared ACRs.

Tissue- and cancer cell-specific identified DACRs (differentially accessible chromatin regions) overlapped with cell type-specific regions
previously identified in a snATAC-seq study of adult and fetal chromatin accessibility, as expected (Zhang et al. 2021; Supplementary Fig. 3).

To support our identified regulons, we looked into public databases and found that 41 out of 87 tissue- and cancer cell-specific transcription
factors (TFs) were also differentially expressed in previous sc/snATAC-seq or bulk ATAC-seq studies, including BRCA (Kumegava et al. 2022),
MM (Frede et al. 2021), ccRCC (Long et al. 2022), PDAC (Fan et al. 2022), pan-organ chromatin accessibility (Zhang et al. 2021), and the bulk
ATAC-seq study in human cancers (Corces et al. 2018; Supplementary table 5a). We then validated the target genes for each TF using TF-
specific ChIP-seq data from ENCODE (Dunham et al. 2012, Luo et al. 2020), corroborating direct binding to target genes in 51 out of 53 TFs
that we examined (Extended Data Fig. 7a and Supplementary Table 5b-c). Our findings were further supported by a centered distribution of
ChIP-seq peaks around TSSs of target genes, indicating TFs' regulation of the target genes. Furthermore, to validate our findings about tissue-
and cancer cell-specific TFs, and metastasis associated TFs, we used results obtained by two orthogonal approaches: SCENIC to infer
regulatory networks from sn/scRNA-seq data and chromVAR scores to infer TF activity based on their motif accessibility scores from snATAC-
seq data.

The study design didn't involve allocation of patients into treatment groups. Therefore randomization procedure was not relevant.

The study design didn't involve allocation of patients into treatment groups. Therefore blinding procedure was not relevant.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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Antibodies
Antibodies used NRF1 (#46743; Cell Signalling Technology)
CTCF (#3418; Cell Signalling Technology)
GATAG (#PA1-104, Invitrogen)
CK19 (#12434, Cell Signalling Technology)
Validation Antibodies were validated by manufactures: NRF1 (#46743) and CTCF (#3418) have been validated using SimpleChIP Enzymatic

Chromatin IP Kits; GATA6 (#PA1-104, Invitrogen) was verified by Cell treatment to ensure that the antibody binds to the antigen
stated; CK19 (#12434, Cell Signalling Technology) was validated by Western blot, IHC and IF.

Eukaryotic cell lines

Policy information about cell lines and Sex and Gender in Research

Cell line source(s) Caki-1: ATCC catalog number HTB-46, https://www.atcc.org/products/htb-46
MCF7: ATCC catalog number HTB-22, https://www.atcc.org/products/htb-22
U251: from Luo et al. 2008 (PMID: 19091943)

Authentication Caki-1 and MCF7 cell lines were authenticated via short tandem repeat (STR) profiling by ATCC. U251 cell line was
authenticated via STR profiling.

Mycoplasma contamination Caki-1, MCF7 and U251 tested negative for mycoplasma contamination using MycoAlert (Lonza, LTO7-118).

Commonly misidentified lines  None of the cell lines used here was among the commonly misidentified lines.
(See ICLAC register)

Animals and other research organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in
Research

Laboratory animals The following mouse strains (Mus musculus) were used as part of this study:
p48-Cre mice (C57BL/6J background), Laboratory of Sunil Hingorani
LSL-KrasG12D mice (C57BL/6J background), Jackson Laboratory #008179
Trp53flox mice (C57BL/6J background), Jackson Laboratory #008462

Wild animals No wild animals were used.

Reporting on sex For all mouse experiments, cohorts were of equal numbers of each sex (both male and female) when possible.

Field-collected samples  No field collected samples were used.

Ethics oversight All animal studies were completed in accordance with NIH-AALAC standards and consistent with Washington University School of
Medicine IACUC regulations (protocol #22-0233), and studies were approved by Washington University School of Medicine

Institutional Animal Studies Committee. All animals were housed in a barrier facility under a 12-hour light/dark cycle with 1-5 mice
per cage.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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