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Epigenetic regulation during cancer 
transitions across 11 tumour types

Nadezhda V. Terekhanova1,2,14, Alla Karpova1,2,14, Wen-Wei Liang1,2,14, Alexander Strzalkowski3, 
Siqi Chen1,2, Yize Li1,2, Austin N. Southard-Smith1,2, Michael D. Iglesia1,2, Michael C. Wendl1,2, 
Reyka G. Jayasinghe1,2, Jingxian Liu1,2, Yizhe Song1,2, Song Cao1,2, Andrew Houston1,2, 
Xiuting Liu1, Matthew A. Wyczalkowski1,2, Rita Jui-Hsien Lu1,2, Wagma Caravan1,2, 
Andrew Shinkle1, Nataly Naser Al Deen1,2, John M. Herndon4,5, Jacqueline Mudd4, Cong Ma3, 
Hirak Sarkar3, Kazuhito Sato1,2, Omar M. Ibrahim1,2, Chia-Kuei Mo1,2, Sara E. Chasnoff4,5, 
Eduard Porta-Pardo6,7, Jason M. Held1,5, Russell Pachynski1,5, Julie K. Schwarz8, 
William E. Gillanders4,5, Albert H. Kim5,9, Ravi Vij1,5, John F. DiPersio1,5, Sidharth V. Puram10, 
Milan G. Chheda1,5, Katherine C. Fuh11,12, David G. DeNardo1,5, Ryan C. Fields4,5 ✉, 
Feng Chen1,5 ✉, Benjamin J. Raphael3 ✉ & Li Ding1,2,5,13 ✉

Chromatin accessibility is essential in regulating gene expression and cellular identity,  
and alterations in accessibility have been implicated in driving cancer initiation, 
progression and metastasis1–4. Although the genetic contributions to oncogenic 
transitions have been investigated, epigenetic drivers remain less understood. Here 
we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus 
chromatin accessibility data (using single-nucleus assay for transposase-accessible 
chromatin) from 225 samples and matched single-cell or single-nucleus RNA- 
sequencing expression data from 206 samples. With over 1 million cells from each 
platform analysed through the enrichment of accessible chromatin regions, 
transcription factor motifs and regulons, we identified epigenetic drivers associated 
with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for 
example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), 
whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 
and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia 
and TNF signalling were linked to cancer initiation, whereas oestrogen response, 
epithelial–mesenchymal transition and apical junction were tied to metastatic 
transition. Furthermore, we revealed a marked correlation between enhancer 
accessibility and gene expression and uncovered cooperation between epigenetic 
and genetic drivers. This atlas provides a foundation for further investigation of 
epigenetic dynamics in cancer transitions.

The spatiotemporal dynamics of chromatin decondensation and sub-
sequent binding of transcriptional machinery1 has an important but 
incompletely understood role in pathogenic transitions in cancer, such 
as initiation, progression and metastasis2. Epigenetic regulation affects 
gene expression, lineage determination, cell–cell interactions and ther-
apeutic resistance. In contrast to genetic drivers, such as somatic muta-
tions, epigenetic drivers are less well defined3. However, they might be 
identified by an enrichment type of analysis, similar to how driver genes 
are found. Understanding their interactions with genetic and envi-
ronmental factors is also crucial. An interaction was recently demon-
strated4 involving KRAS mutation and tissue damage in the pancreatic 

epithelium that remodels chromatin, producing cancer-favouring 
transcriptional activity. Here we consider epigenetic drivers to be the 
activity of regulatory elements or transcription factors (TFs) associ-
ated with cancer initiation, progression and metastasis, often through 
interactions with genetic drivers. It is possible that such epigenetic 
drivers may explain previously unknown tumorigenic mechanisms.

The assay for transposase-accessible chromatin using sequencing 
(ATAC-seq) is a rapid and sensitive method for profiling the epigenome5. 
Previous studies have obtained ATAC-seq results for some cancers6,7 at 
the bulk level as averages across different cell types within a tumour. The 
recent development of single-nucleus ATAC-seq (snATAC-seq) provides 
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a far greater resolution to examine single-cell epigenomes8,9. Coupling 
snATAC-seq with single-nucleus RNA sequencing (snRNA-seq) permits 
simultaneous profiling of the epigenome and transcriptome in the 
same individual cells, enabling direct analysis of associations between 
chromatin accessibility and gene transcription. We constructed an 
integrative multi-omic atlas of 11 major cancer types procured from 
over 200 patient cases. The large number of samples and considerable 
representation of cancer types and statuses (for example, normal, pri-
mary and metastatic) furnish a well-powered cohort for investigating 
epigenetic drivers in cancer.

We provide a unified map of lineage-specific and cancer-specific 
cell populations, differentially accessible enhancers and promoters, 
epigenetically regulated cancer-associated genes and TFs that are 
important across major cancer transitions. Although some of these 
drivers and transcriptional programs are associated with transitions 
in multiple cancer types, others show high cancer-type specificity. 
We found that correlations between epigenetic changes and genetic 
mutations within the same pathway are present across cancer types, 
suggesting numerous instances of cooperation in cancer transition 
programs. This study highlights the potential of TFs as prognostic 
markers, offering a deeper understanding of the molecular underpin-
nings driving cancer evolution.

Chromatin accessibility across cancers
As part of the NCI Human Tumour Atlas Network (HTAN), we procured 
225 samples from 158 primary and 52 metastatic tumour samples and 15 
normal adjacent tissues (NATs) from 201 patients across 11 cancer types 
(Fig. 1a,b, Extended Data Figs. 1 and 2 and Supplementary Table 1a,b). 
This set contains 52 metastatic samples from colorectal cancer (CRC), 
pancreatic ductal adenocarcinoma (PDAC), skin cutaneous melanoma 
(SKCM), uterine corpus endometrial carcinoma (UCEC), ovarian cancer 
(OV) and breast cancer (BRCA), including paired primary and metastatic 
samples of five cases of UCEC and four cases of CRC. We performed 
snATAC-seq analysis of all 225 samples, along with paired single-cell or 
single-nucleus RNA-seq (sc/snRNA-seq) for 206 of these samples (Sup-
plementary Table 1a). Among those, 14 scRNA-seq multiple myeloma 
(MM) samples, 10 snRNA-seq PDAC samples, 14 snRNA-seq glioblastoma 
(GBM) samples, and 28 snATAC-seq and 27 snRNA-seq clear-cell renal 
cell carcinoma (ccRCC) samples were obtained from previous stud-
ies10–13, with many of the ccRCC and GBM samples originating from 
the NCI Clinical Proteomic Tumour Analysis Consortium (CPTAC). 
Bulk whole-exome sequencing (WES) data were also generated for 195 
samples (Supplementary Table 1a). These multi-omic datasets enable 
the systematic discernment of cell subpopulations in diverse cancer 
types and tracing of cancer transitions from normal precursor to pri-
mary tumour to metastasis.

The snATAC-seq data encompassed 1,019,175 nuclei from the 225 
samples (mean nuclei per sample, 4,530) (Fig. 1b and Extended Data 
Fig. 1b). We identified accessible chromatin regions (ACRs) across all 
samples, averaging 126,196 ACRs per sample, with most appearing in 
intronic (49%), distal intergenic (30.8%) and promoter (8.6%) regions, 
as expected (Supplementary Table 1c,d and Supplementary Note 1). We 
also performed sc/snRNA-seq analysis of 206 samples, with snRNA-seq 
and snATAC-seq data generated from the same cells in 129 instances 
(snMultiome-seq samples; Extended Data Fig. 1a). The combined sc/
snRNA-seq data yielded 1,157,955 cells or nuclei, which were annotated 
by the expression of curated epithelial, immune and stromal marker 
genes (Extended Data Fig. 1c, Supplementary Note 2 and Supplemen-
tary Table 1e). sc/snRNA-seq cell annotation was further used to anno-
tate the snATAC-seq dataset. In total, 250,222 immune, 69,684 stromal, 
69,506 normal epithelial and 588,895 cancer cells were detected (Fig. 1b 
and Extended Data Fig. 1b).

We identified 56,001 tissue- and cancer-cell-specific differentially 
accessible chromatin regions (DACRs) by comparing each cancer type 

to all others (Extended Data Fig. 2g, Supplementary Table 2a–c and 
Supplementary Note 3). Many of these DACRs include the promoters 
of tissue-specific genes, such as keratin genes in squamous cancers, 
PAX8 in OV and UCEC, GATA3 in non-basal BRCA, PTPRZ1 in GBM and 
PAX3 in SKCM (Extended Data Fig. 2g). Dimensionality reduction of 
chromatin accessibility in malignant cells at the sample level (Extended 
Data Fig. 3a) revealed the expected similarity between cancer types 
that reflect their primary tissue of origin. Specifically, head and neck 
squamous cell carcinoma (HNSCC) and cervical squamous cell car-
cinoma (CESC) were co-clustered, whereas non-squamous cervical 
samples were clustered with epithelial cancer types, further supported 
by high expression of adenocarcinoma markers (therefore annotated 
as CEAD) (Extended Data Fig. 3b). We also found that one PDAC meta-
static sample had high expression of squamous markers, but lacked 
adenocarcinoma markers, explaining its co-clustering with other squa-
mous cancers (Extended Data Fig. 3a). We also observed that UCEC and 
OV clustered together, whereas basal BRCA was distinctly separated 
from non-basal BRCA, indicating significant differences between these 
subtypes. These were subsequently treated as separate cancer types 
here. One example of a squamous-tissue-specific ACR shared by the 
squamous cancers HNSCC and CESC was the KRT6A promoter region 
(Extended Data Fig. 3c (left)). KRT6A encodes keratin 6A, which is an 
important biomarker of the squamous lineage14. The similarity between 
OV and UCEC cancer cells was exemplified by shared accessibility of 
the PAX8 promoter (Extended Data Fig. 3c (right)), which is consistent 
with its known association with these cancers15,16.

Chromatin regions altered in tumours
We sought to define the genetic and epigenetic changes underpinning 
the transition from normal cells to cancer cells. By correlating cancer 
cells and normal cells on the basis of chromatin accessibility (Fig. 1c) 
and gene expression (Extended Data Fig. 4a), we defined the following 
normal cell populations as the closest normal cells (CNCs): luminal 
mature cells for BRCA of the non-basal subtypes; luminal progenitor 
cells for BRCA of the basal subtype; ductal-like-2 cells for PDAC; distal 
stem cells for CRC; secretory endometrial epithelial cells for UCEC 
and OV; normal squamous cells for HNSCC and CESC; melanocytes for 
SKCM; proximal tubule cells for ccRCC; and oligodendrocyte precur-
sor cells (OPCs) for GBM. The CNCs that we identified in this manner 
are consistent with those identified in previous studies (Methods and 
Supplementary Table 2d). For MM, we used normal B cells as the CNC17.

We used these CNCs to remove tissue-specific signals and identify 
cancer-cell-specific changes in chromatin accessibility shared by sev-
eral cancer types. By comparing cancer cells with their respective CNCs, 
we found 22,187 (Fig. 1d) and 29,074 (Extended Data Fig. 4b) respec-
tive regions of increased and decreased accessibility in cancer cells 
and mapped them to their nearest respective genes based on DACR 
proximity to the closest transcription start sites (TSS) (Supplementary 
Table 2e,f). In total, 53% of DACRs were found in enhancer regions and 
37% in promoter regions, suggesting that their functional relevance 
to gene expression changes (Extended Data Fig. 4c). Indeed, across 
cancers, around 75% of DACRs matched the direction of the expression 
change of the nearest gene (Extended Data Fig. 4d). Furthermore, we 
performed a correlation analysis between DACRs and the nearest gene 
expression and observed significant positive correlation in all can-
cers, with the rho values ranging from 0.25 (BRCA, basal) to 0.5 (PDAC) 
(Extended Data Fig. 4e). Several genes showed pan-cancer patterns of 
increased accessibility of nearby genomic regions (Fig. 1d), including 
solute carrier family member SLC38A8, AP1 family TF MAFA and the 
prognostic biomarker in several cancers, class III β-tubulin (TUBB3)18. 
Cancer-type-specific DACRs included HOX TF HOXA4 in GBM, an unfa-
vourable prognostic factor in glioma19, the clinically significant marker 
FGF19 in BRCA (of non-basal subtypes)20 and hypoxia-inducible factor 
3 EGLN3, a known pathological marker of ccRCC21.
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We further identified hallmark pathways enriched in cancer-cell- 
specific DACRs (Extended Data Fig. 4f). Large numbers of DACRs 
marked genes downregulated in response to ultraviolet radiation in 5 
out of 7 cancer types. Among these are collagen genes, growth factor 
receptors and MAPK/ERK kinases. The hypoxia pathway was enriched in 
ccRCC, BRCA, PDAC and UCEC, as was TNF signalling in ccRCC, CRC, MM 

and PDAC. Although VHL mutation drives hypoxia in ccRCC22, hypoxia 
enrichment in other cancers cannot be explained solely by mutations, 
suggesting that epigenetic dysregulation is a driver. Two DACRs were 
especially notable (Extended Data Fig. 4g). Enhancer accessibility of 
ABCC1 was increased in ccRCC, GBM and UCEC, exemplifying genes 
downregulated in response to ultraviolet radiation. ABCC1 encodes 

BRCA BRCA basal PDAC CRC UCEC OV HNSCC CESC SKCM ccRCC GBM
Sample type Metastasis Primary tumour
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Fig. 1 | Chromatin accessibility patterns across 11 cancer types. a, Schematic 
of the data generation and study design, showing the cancer types and sample 
types collected, the building, annotation and integration of the atlas, and the 
biological entities that were investigated. b, Uniform manifold approximation 
and projection (UMAP) plot of an integrated pan-cancer snATAC-seq object 
showing the distribution of 250,222 immune, 69,684 stromal, 69,506 normal 
epithelial and 588,895 cancer cells across 225 samples. A detailed breakdown 
of 36 different cell types is shown in Extended Data Figs. 1b and 2a,b. c, The 
Pearson’s correlation coefficients between cancer cells from each tumour and 
normal cell types of the tumour’s tissue of origin. Cell types are ordered by 
increasing median correlation coefficient per cohort; the right-most cell type 

was considered the CNC and was subsequently used as a reference for identifying  
cancer-associated epigenetic drivers. d, The top cancer-cell-associated DACRs 
identified by comparing cancer cells versus the CNCs. The bubble size shows 
the percentage of cancer cells with accessible DACRs and the colour conveys 
the log2[FC]. The x axis shows the nearest gene of each DACR. Genes are grouped  
by those shared between cancers and those specific to cancer types. Cancer- 
specific DACRs were selected on the basis of specificity and by fold change (FC) 
in each cancer type (columns), or if they were shared by the maximal number of 
cancers (shared). Positive log2[FC] is shown if ACR was accessible in >5% of 
cancer cells. DACRs of genes that overlap promoters and enhancers from the 
EpiMap database are highlighted in bold.
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multidrug-resistance protein-1 (MRP1) and promotes tumour growth 
through drug efflux in neuroblastoma cells23 and lipid-signalling path-
ways in uterine leiomyoma cells24. Another example shows increased 
accessibility of the enhancer of VEGFA, a known pro-angiogenic factor25, 
in ccRCC, CRC and UCEC.

ACR-to-gene links in tumour progression
The large number of malignant nuclei sequenced using snMultiome- 
seq in 122 tumour samples from 8 cancer types and measurements 
of over half a million enhancer ACRs enabled us to predict enhancer 
ACRs regulating gene expression. First, we evaluated whether our 
dataset shows any global association patterns between accessibility 
of enhancer and promoter ACRs and gene expression. By correlating 
malignant and normal epithelial cells using accessibility and gene 
expression, we found that the accessibilities of enhancer elements 
were more specific to cancer types and tissue of origin than the acces-
sibilities of promoters (Fig. 2a), consistent with other studies6,26. 
Enhancer accessibility also better reflected transcript expression than 
promoter accessibility did, suggesting their crucial role in regulating 
gene expression. To predict regulatory relationships between ACRs 
and gene expression, we computed correlation-based ACR-to-gene 
links (Methods). Nearly half of all significant ACR-to-gene links were 
between genes and EpiMap enhancer regions (Fig. 2b) and most of 
those enhancer ACR-to-gene links were cancer-type specific (Fig. 2c), 
supporting the tissue and cancer-type specificity of enhancers demon-
strated in Fig. 2a. Only a modest fraction (25–35%) of the ACR-to-gene 
links was previously reported in the GeneHancer Interactions database 
(Extended Data Fig. 5a and Supplementary Table 3), indicating that 
the majority of the links that we identified in this study are previously 
undescribed.

We next sought to identify which linked ACRs and genes might be 
related to transition from normal to primary cancer cells. For each link, 
we required that both the ACR and the gene were a respective DACR 
and a differentially expressed gene (DEG; log2[fold change (FC)] > 0.25 
and false-discovery-rate-adjusted P (FDR) < 0.05). We observed 397 
linked ACRs (most of which are enhancers) gaining accessibility in most 
primary PDAC tumours (Fig. 2d). One proximal and two distal enhanc-
ers in particular were linked to the expression of recently reported 
oncogenic ASAP2 in PDAC27 (Fig. 2d and Extended Data Fig. 5b), while 
the accessibility of its promoter did not change (Extended Data Fig. 5b). 
ASAP2 encodes a GTPase-activating protein that activates the GTPases 
ARF1, ARF5 and ARF628,29, influencing the dynamics of focal adhesions28. 
It also was shown to promote proliferation of PDAC and HCC cancer 
cells27,30. Expression of ASAP2 was a similarly unfavourable prognostic 
factor in the TCGA PDAC cohort (Extended Data Fig. 5c).

Other notable examples of ACR-to-gene links include TF genes KLF6 
and PPARG, linked respectively to one and two enhancers that gain 
accessibility in PDAC cancer cells (Fig. 2d and Extended Data Fig. 5d). 
PPARG expression in pancreatic cancer is associated with worse sur-
vival31 and its knockout in pancreatic cancer cell lines leads to decreased 
cell proliferation32 (Extended Data Fig. 5e). Another unfavourable prog-
nostic marker of PDAC, FLNB, was linked to five enhancer regions, sug-
gesting extensive epigenetic regulation (Extended Data Fig. 5f). In the 
basal BRCA cohort, we observed several enhancers linked to the genes 
EN1, VIM and VEGFA (Extended Data Fig. 5g–i). The region between 10 kb 
upstream and 20 kb downstream of the EN1 gained high accessibility 
compared with the CNC (Extended Data Fig. 5i), suggesting substantial 
epigenetic regulation of EN1 expression. EN1 is a developmental TF that 
was shown to be a transcriptional dependency of triple-negative BRCA, 
promoting the survival of basal-like breast and other cancers33,34. As 
opposed to more proximal enhancers of VEGFA that gain accessibility in 
ccRCC, CRC and UCEC cancers (Extended Data Fig. 4g), distal upstream 
and downstream enhancers were upregulated in BRCA basal cancer 
(Extended Data Fig. 5h). These observations demonstrate the strength 

of ACR-to-gene analysis to identify potential regulatory relationships 
between distal elements and clinically relevant genes.

Regulons in primary tumours
To better understand transcriptional regulations involved in cancer 
development, we sought to define TF target genes that underlie cell 
state. We used SCENIC35 to identify regulatory relationships between 
TFs and their target genes, namely the regulon, in each cancer cohort 
(Methods and Extended Data Fig. 6a). This analysis revealed 258 regu-
lons with concordant gene expression between TFs and their targets 
(Supplementary Table 4a), each one containing between 20 and 4,310 
target genes (median, 372). Of these, 87 regulons showed high specific-
ity for certain cancer types (Fig. 3a and Supplementary Table 4b–e). 
Among those, we observed 41 regulons were tissue specific (shared 
between cancer cells and the CNCs) and 46 regulons were cancer cell 
specific (more active in cancer cells compared with in the CNCs; Sup-
plementary Table 4c,e). Examples of tissue-specific regulons include 
FOXA1 and GATA3 in BRCA non-basal cancer, KLF4 and FOSL1 in CESC 
and HNSCC, HNF1A and KLF9 in ccRCC, and HNF4G and GATA6 in CRC 
and PDAC.

When compared to CNCs, several regulons showed enhanced activ-
ity in malignant cells (Fig. 3a and Supplementary Table 4c), including 
MYBL1 in BRCA basal, OV and UCEC; TP73 in CESC and HNSCC; KLF6 in 
PDAC and ccRCC (Fig. 3b); and NRF1 in PDAC, GBM and SKCM (Fig. 3b). 
The accessibilities of the KLF6 and NRF1 motifs were also increased in 
these cancers (Fig. 3b), further supporting enhanced activity of these 
TFs. Pancreatic cancer cells also showed enhanced activity of several 
PDAC-specific regulons, including PPARG, KLF3, FOXL1, MAFK and GLI2 
(Fig. 3a,b and Extended Data Fig. 6b), and several regulons shared with 
squamous cells, such as TP63, FOSL1 and ELK3 (Fig. 3a and Extended 
Data Fig. 6c). Most of these TFs also had increased motif accessibility 
(Extended Data Fig. 6b,c and Supplementary Table 4d,e). Moreover, 
several regulons showed decreased activity in primary cancer cells, 
including GATA6, which is significantly reduced in UCEC, OV, PDAC 
and CRC (Extended Data Fig. 6d).

We used various methods to further support the regulons that we 
prioritized (Supplementary Table 5 and Supplementary Note 4). We 
found that target genes of cancer-cell-specific regulons were enriched 
with cancer-specific pathways (Extended Data Fig. 6e), indicating their 
involvement in cancer-related processes. We also showed that target 
genes of 21 TFs were more likely to be linked to ACRs containing bind-
ing motifs of these TFs than random genes (Fig. 3c,d), validating the 
connections among target gene expression, ACR accessibility and TF 
activity. We next validated the target genes for each TF using TF-specific 
chromatin immunoprecipitation followed by sequencing (ChIP–seq) 
data from ENCODE36, corroborating direct binding to target genes in 
51 out of 53 TFs that we examined (Extended Data Fig. 7a and Supple-
mentary Table 5b,c). Our findings were further supported by a centred 
distribution of ChIP–seq peaks around the TSSs of target genes, indi-
cating regulation of the target genes by the TFs (Fig. 3e and Extended 
Data Fig. 7b,c). These analyses not only confirm some of our findings, 
but also highlight the power of discovering new events with a larger 
pan-cancer cohort. To further validate our results, we performed a 
cleavage under targets and release using nuclease (CUT&RUN) assay in 
the U251 GBM cell line (Fig. 3e and Extended Data Fig. 7c), profiling the 
direct binding of NRF1 at the promoters of target genes. We observed 
a consistent pattern of binding across many different target genes, 
providing further evidence to support our findings.

Epigenetic programs in cancer metastasis
Our cohort included 52 metastatic samples from 6 tumour types: SKCM 
(16), CRC (15), PDAC (13), UCEC (5), OV (2) and BRCA (1). Among those, 
we had 9 cases (5 UCEC and 4 CRC) with paired primary–metastatic 
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samples, enabling us to directly evaluate the epigenetic changes that 
lead to metastasis in individual cases.

We first analysed transcriptional programs involved in metasta-
sis using the four cohorts for which we had at least five metastasis 
samples, namely SKCM, CRC, PDAC and UCEC. We compared cancer 
cells from primary tumour samples and metastasis samples for each 
cohort, finding several important prognostic markers (Extended Data 
Fig. 8a and Supplementary Table 6a–c). LAMA5 regulatory regions 
were upregulated across CRC liver metastasis samples, consistent 
with LAMA5 promoting colorectal liver metastasis growth37. GNA13 

regulatory regions were upregulated in metastatic SKCM; GNA13 is 
associated with proliferation and metastasis in several tumour types, 
but its specific role in melanoma is less understood38,39.

To identify TFs that change their activity during the transition from 
primary to metastasis, we compared TF motif accessibility scores 
(Methods) between primary and metastatic cells across four cancers 
(SKCM, CRC, PDAC and UCEC). For CRC, we observed several TF motifs 
with consistently higher accessibilities in metastatic cells versus pri-
mary cancer cells, including the epithelial to mesenchymal transition 
(EMT) master regulator TWIST140, and PBX3, which promotes migration 
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of CRC cells41 (Fig. 4a and Supplementary Table 6d–f). In PDAC, we 
found ELF3 and GATA6 among the top significant TFs with decreased 
motif accessibilities. ELF3 is associated with the epithelial phenotype 
and represses EMT42, and it was also identified as a tissue-specific regu-
lon in our data (Fig. 3a). GATA6 regulates EMT and inhibits EMT in vitro 
and cell dissemination in vivo in pancreatic cancer43. GRHL1 was one of 
the top TFs with decreased motif accessibility in metastasis compared 
with in the primary tumour in UCEC and induces epithelial cell adhe-
sion molecules and represses genes that are involved in cell migration 

and invasion44. We also observed multiple members of FOX-family 
TFs among the most significant downregulated TFs across cancers. 
FOX-family motifs were also enriched in DACRs that were upregulated 
in primary PDAC and UCEC (Supplementary Note 4). FOXA1 represses 
genes associated with EMT45 and FOXN3 represses growth and invasion 
in some cancers46,47. These results support the idea that both common 
and specific TFs are involved in the process of metastasis across differ-
ent cancers. Next, we used the genetically engineered mouse models of 
PDAC driven by KrasG12D mutation and Trp53 loss (p48-cre;LSL-KrasG12D;

Expected number of genes
with links to PPARG motif 

Observed
number of

target
genes

C
ou

nt
s

log2[FC] 0.40.81.2 –log10[P] 5 10

FO
X

A
1

G
LI

2
TP

63

C
D

X
1

C
D

X
2

H
O

X
A

9
H

O
X

B
9

O
N

E
C

U
T1

FO
S

L1
G

LI
2

TP
63

E
LF

3
FO

S
L1

G
A

TA
6

G
LI

2
H

N
F4

G
K

LF
3

K
LF

6
M

A
FK

O
N

E
C

U
T1

O
N

E
C

U
T2

P
P

A
R

G
TE

F
TP

63
O

N
E

C
U

T1
S

O
X

10
TE

F
TW

IS
T1

M
A

FK
V

A
X

2

30 40 50 60
0

10

20

30

40
PPARG

B
R

C
A

C
E

S
C

C
R

C

H
N

S
C

C

P
D

A
C

S
K

C
M

U
C

E
C

0

5

10
lo

g 2[
ta

rg
et

 n
]

C
el

ls

E
R

G
TP

63
K

LF
5

K
LF

4
FO

S
L1

E
LK

3
K

LF
10

R
X

R
A

R
A

R
G

TP
73

E
2F

8
K
LF

6
M

A
FK

FO
X

L1
G

LI
2

O
N

E
C

U
T2

G
A

TA
6

H
N

F4
G

P
P

A
R

G
E

LF
3

K
LF

3
H

O
X

B
5

H
O

X
B

7
C

D
X

1
H

O
X

A
6

H
O

X
A

9
C

D
X

2
H

O
X

B
9

IS
X

H
O

X
A

13
N

R
1I

2
TH

A
P

11
M

A
Z

TH
A

P
1

C
R

E
B

3
E

TV
2

A
TF

4
JU

N
D

TC
F3

K
LF

13
IR

F5
S

P
D

E
F

G
A

TA
3

FO
X

A
1

X
B

P
1

R
A

R
A

U
S

F1
TF

A
P

2C
TC

F7
L1

M
Y
B
L1

JD
P

2
C

TC
FL

M
E

IS
1

M
E

O
X

1
G

A
TA

2
H

O
X

B
6

M
S

X
1

V
A

X
2

S
O

X
9

N
E

U
R

O
D

2
M

E
IS

3
P

O
U

3F
2

LH
X

2
R

FX
4

S
O

X
8

A
S

C
L1

N
E

U
R

O
D

1
P

A
X

4
N
R
F1

E
2F

7
TE

F
O

N
E

C
U

T1
E

M
X

1
M

X
I1

K
LF

9
H

S
F4

FO
X

P
2

N
R

1H
4

H
N

F1
A

M
A

F
P

O
U

3F
3

R
U

N
X

3
R

U
N

X
2

S
O

X
10

LE
F1

TW
IS

T1
E

TV
5

AUC,
scaled

−2

0

1

2

BRCA
non-basal

BRCA
basal

ccRCC

CESC

CRC

HNSCC

MM

OV

PDAC

GBM

SKCM

UCEC

Regulon type
Cancer
speci�c
Tissue
speci�c

Cell type

Tumour
Normal

a

b c

e

d

0 0.076

−5

0

5

10

K
LF

6 
m

ot
if 

ac
ce

ss
ib

ili
ty

2.42 × 10–10 2.88 × 10–26

−2

0

2

4

P
P

A
R

G
 m

ot
if 

ac
ce

ss
ib

ili
ty

6.4 × 10–13

ccRCC CRC PDAC CRC PDAC GBM PDAC SKCM

−2.5

0

2.5

N
R

F1
 m

ot
if 

ac
ce

ss
ib

ili
ty

0 6.71 × 10–121

Can
ce

r c
ell

s

Pro
xim

al 
tu

bule

Can
ce

r c
ell

s

Dist
al 

ste
m

 ce
lls

Can
ce

r c
ell

s

Duc
ta

l-l
ike

-2
 ce

lls

0.1

0.2

0.3

0.4

K
LF

6 
re

gu
lo

n 
A

U
C

 s
co

re

1.73 × 10–274 4.32 × 10–13 0.0013

Can
ce

r c
ell

s

Astr
oc

yte
s

OPC

Can
ce

r c
ell

s

Can
ce

r c
ell

s

M
ela

no
cy

te
s

0.1

0.2

0.3

0.4

N
R

F1
 r

eg
ul

on
 A

U
C

 s
co

re

1.16 × 10–24

0.1

0.2

0.3

P
P

A
R

G
 r

eg
ul

on
 A

U
C

 s
co

re

ccRCC CRC PDAC GBM PDAC SKCMCRC PDAC

0.5

1.5

2.5

2

4

0

12.5

7.5

2.5

R
ea

d
 c

ou
nt

 fr
eq

ue
nc

y 
(×

10
–4

)

2

4

6

0

2

3

4

0

snATAC-seq
CUT&RUN

ChIP–seq (ENCODE)

8

1

PPARG regulon

PDAC

−5.0 kb −2.5 kb TSS 2.5 kb 5.0 kb

−5.0 kb −2.5 kb TSS 2.5 kb 5.0 kb

GBM

U251

NRF1 regulon

ENCODE
cell lines

−1

5.28 × 10–43

Can
ce

r c
ell

s

Dist
al 

ste
m

 ce
lls

Can
ce

r c
ell

s

Duc
ta

l-l
ike

-2
 ce

lls

0.35 0.5

8.2 × 10–182

Duc
ta

l-l
ike

-2
 ce

lls

Can
ce

r c
ell

s

Pro
xim

al 
tu

bule

Can
ce

r c
ell

s

Dist
al 

ste
m

 ce
lls

Can
ce

r c
ell

s

Duc
ta

l-l
ike

-2
 ce

lls

Can
ce

r c
ell

s

Astr
oc

yte
s

OPC

Can
ce

r c
ell

s

Can
ce

r c
ell

s

M
ela

no
cy

te
s

Can
ce

r c
ell

s

Dist
al 

ste
m

 ce
lls

Can
ce

r c
ell

s

Duc
ta

l-l
ike

-2
 ce

lls

Duc
ta

l-l
ike

-2
 ce

lls

5.06.74 × 10–186 3.23 × 10–56 7.95 × 10–9

5.15 × 10–5

R
ea

d
 c

ou
nt

 fr
eq

ue
nc

y 
(×

10
–4

)

ENCODE
cell lines

Fig. 3 | Pan-cancer and cancer-specific regulons. a, Tissue- and cancer- 
cell-specific regulons (columns) identified using SCENIC on sc/snRNA-seq 
data, where a regulon is a TF and its n target genes, with the number of genes 
shown at the top. The heat map shows scaled area under the curve (AUC) scores 
across 200 tumour and 200 normal randomly selected cells (rows) from each 
cancer. Cancer-specific regulons show higher activity in cancer cells versus the 
CNC. The top cancer-cell-specific regulons shared across several cancers are 
highlighted in bold. b, Regulon activity scores in primary cancer cells and 
corresponding CNCs (top; n = 2,211 (PDAC), n = 744 (ductal-like-2), n = 5,000 
(ccRCC), n = 714 (proximal tubule), n = 446 (CRC), n = 184 (distal stem cells), 
n = 3,600 (GBM), n = 842 (OPC), n = 389 (astrocytes), n = 800 (SKCM) and n = 20 
(melanocytes)) and TF motif accessibility scores (bottom; n = 30,428 (PDAC), 
n = 1,652 (ductal-like-2), n = 106,250 (ccRCC), n = 11,471 (proximal tubule), n = 6,243 
(CRC), n = 860 (distal stem cells), n = 83,507 (GBM), n = 933 (OPC), n = 996 
(astrocytes), n = 7,844 (SKCM) and n = 20 (melanocytes)). The boxes are 
coloured by cancer type, and the green boxes represent normal cells. 

FDR-adjusted Wilcoxon two-sided P values are shown (Supplementary 
Table 4c,e). For the box plots, the centre line shows the median, the box limits 
show the first and third quartiles, the upper and lower whiskers extend from 
the hinge to the largest or the lowest value no further than 1.5× the interquartile 
range (IQR) from the hinge. c, TFs of which the target genes are enriched for 
TF-specific ACR-to-gene links (ACR containing this TF-binding site). Colour 
indicates the log2[FC] between the observed number of target genes with  
such links over the expected number (K1, ..., n) of random genes with such links. 
One-sided P values were calculated for each regulon from a Gaussian z score, 
z = (M − μ)/σ, where M is the observed number of target genes linked to TF 
motifs. d, Example of the normal distribution of the number of genes with 
PPARG-specific PDAC ACR-to-gene links found in randomly sampled genes.  
The observed number of PPARG target genes with PPARG-specific ACR-to-gene 
links is indicated by the red line. e, The presence of ChIP–seq peaks (ENCODE), 
snATAC-seq peaks or CUT&RUN peaks around the TSS of target genes.
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Trp53flox) to validate decreasing activity of GATA6 in PDAC metastases. 
Specifically, we performed multiplex immunohistochemistry (mpIHC) 
analysis of GATA6 and cytokeratin 19 (a cancer cell marker) in matched 
primary tumours and metastases in liver tissues. Consistent with obser-
vations from human snATAC-seq data analysis, we found fewer GATA6+ 
and GATA6high PDAC cancer cells in all liver metastases compared with 
in their matched primary pancreatic tumours (Fig. 4b,c; paired t-test, 
P = 0.066 and P = 0.057, respectively).

We further evaluated the pathways that are enriched in DACRs upreg-
ulated between metastatic and primary tumour samples in each of these 

four cohorts, and found that development-related pathways—such as 
EMT, myogenesis and apical junction—were significant in three cohorts. 
This observation is consistent with the fact that the loss of the epithelial 
phenotype is an important process involved in metastasis (Fig. 4d). We 
also observed pathways that were enriched specifically in individual 
cohorts, for example, TNF signalling was significant in PDAC, consistent 
with the known KRAS-induced NF-κB activation in PDAC48.

Finally, we analysed snATAC-seq data for the nine CRC and UCEC cases 
with both primary and metastasis samples available. First, by combining 
normal epithelial cells with cancer cells, we observed distinct clusters 
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Fig. 4 | Epigenetic programs activated in cancer metastasis. a, TFs with 
differential motif accessibilities between metastasis and primary samples in 
four cancer types. The y axis shows FDR-adjusted P values calculated using 
two-sided Wilcoxon rank-sum tests. The expression score corresponds to the 
absolute value of the log2[FC] in TF expression between metastasis and primary 
cancer cells, using per sample average values, and requiring the same fold 
change direction as that of the motif score difference for the same TF–cancer 
pair. b, mpIHC analysis of GATA6 (red) expression in mouse models of PDAC. 
CK19 (green) marks cancer cells and DAPI (blue) marks nuclei. Scale bars, 
100 μm (main images) and 50 μm (insets). c, The GATA6+ and GATA6high cancer 
cell percentage was higher in primary PDAC compared with in matched metastatic  
(met.) PDAC. n = 6. P values calculated using two-sided paired t-tests are shown. 
For the box plots, the centre line shows the median, the box limits show the first 

and third quartiles, the upper and lower whiskers extend from the hinge to the 
largest or the lowest value no further than 1.5 × IQR from the hinge. d, Significant  
and suggestive (FDR ≤ 20%) hallmark pathway enrichments from DACRs 
upregulated in metastatic versus primary tumour. The bubble size and colour 
convey gene count and log10[FDR], respectively. The total number of DACRs per 
cancer type used in the analysis was capped at 5,000 by log2[FC] (top). The total 
number of DACRs annotated in each pathway is shown on the right. e,f, UMAP 
plots (left) for paired primary and metastasis samples of a CRC case (e) and a 
UCEC case (f). The small heat maps show Pearson’s correlation coefficients 
based on TF-motif scores averaged per cluster in each sample. Scatter plots 
showing cells ordered along the trajectories identified by Slingshot (centre),  
and scatter plots showing the association between PBX3 (e) or SNAI1 (f) motif 
accessibility and the progression of pseudotime (right) are shown.



Nature | Vol 623 | 9 November 2023 | 439

composed of neoplastic cells, with prevalence varying between primary 
and metastatic samples in each cluster (Fig. 4e,f and Extended Data 
Fig. 8b). We next evaluated TF-motif accessibility profiles of primary, 
metastatic and normal epithelial cells in each cluster from those nine 
cases (Extended Data Fig. 8c). By conducting trajectory analysis of 
tumour and normal epithelial cells, we observed that all of the paired 
primary–metastatic samples followed a linear trajectory, gradually 
progressing from normal (if available) to primary to metastatic cells 
(Fig. 4e,f and Extended Data Fig. 9a–g). This suggests that trajectory 
pseudotimes reflect the metastatic process. We found that the trajec-
tories of samples were positively correlated with known EMT-specific 
motifs and other motifs implicated in the metastases, such as SNAI1 and 
PBX341 (Fig. 4e,f, Supplementary Note 5 and Supplementary Table 7). 
Leveraging the trajectory analysis, we identified ACRs that are signifi-
cantly associated with pseudotimes (Methods) and further evaluated 
pathways that are enriched in those ACRs (Extended Data Fig. 9h) from 
nine cases. Although some variations were observed across samples, 
the top pathways (for example, EMT, myogenesis, apical junction, early 
oestrogen response) enriched in metastases found at the cohort level 
were redetected in the majority of the cases (Extended Data Fig. 9h and 
Supplementary Note 6).

Genetic and epigenetic interactions
To facilitate the investigation of how epigenetic drivers interact with 
genetic drivers, we performed genetic characterizations of somatic 
mutations and copy-number variations (CNVs) on the 176 tumour sam-
ples with available WES data (Supplementary Table 8). The mutation 
burdens across cancer types were similar to those that were previ-
ously reported49 (Extended Data Fig. 10a and Supplementary Note 7). 
We further investigated the impact of TP53 missense and truncation 
mutations on chromatin accessibility within BRCA samples, which were 
enriched for TP53 mutations (Extended Data Fig. 10b). For this analysis, 
we used ACRs that overlapped with TP53 ChIP–seq peaks obtained from 
ENCODE36, also requiring that they contain a TP53-binding motif. The 
only ACR identified in both comparisons was the one associated with 
GDF15—a known target of TP5350 that mediates G1 cell cycle arrest and 
apoptosis and is involved in treatment resistance and maintenance 
of BRCA stem-like cells51. FGD3, a positive prognostic feature in BRCA 
that inhibits cell migration52, was identified in DACRs associated with 
wild-type versus missense TP53.

We also investigated the accessibility of TERT promoter (TERTp) with 
hotspot mutations in cancer and normal cells. We profiled two TERTp 
hotspot mutations C228T (chromosome 5, 1295113, G to A) and C250T 
(chromosome 5, 1295135, G to A) in the analyses. The C228T mutation 
was primarily detected in GBM cancer cells, whereas the C250T muta-
tion was typically observed in SKCM cancer cells. Out of all samples, 25 
showed TERTp mutations, with the majority of the variants preferen-
tially accessible in cancer cells, which was also in accordance with high 
TERT expression from snRNA-seq data (Fig. 5a). Conversely, in normal 
cells, the snATAC-seq coverage for TERTp positions was notably lower, 
indicating the absence of TERTp accessibility in normal cells (Fig. 5a). 
Compared with snATAC-seq data, bulk WES had a much lower variant 
allele frequency of TERTp mutations, indicating that snATAC-seq ena-
bles the detection of mutations that induce chromatin accessibility 
(Fig. 5a).

We have also evaluated the epigenetic regulation of oncogenes49 by 
correlating their expression with the accessibilities of the enhancers 
(ACR-to-gene links). We identified 30 oncogenes of which the expres-
sion was linked to enhancer accessibility, with the strongest links in 
EGFR, KRAS, ERBB2, CTNNB1 and MET (Fig. 5b). Many oncogenes showed 
numerous enhancer-to-gene links suggesting extensive and complex 
epigenetic regulation of these genes. EGFR showed the highest num-
ber of links in HNSCC; this observation aligned with the highest EGFR 
expression and highest accessibility of enhancers in the EGFR gene body 

(Fig. 5c (only EGFR WES-based CNV-neutral samples were included in 
the analysis) and Supplementary Table 8j). Accessibility of the EGFR 
gene body in CESC was similar to that in HNSCC. However, accessibility 
of upstream enhancers was less prominent, which could explain lower 
EGFR expression in CESC. Finally, EGFR accessibilities in BRCA basal 
and CRC were even less pronounced, showcasing granular epigenetic 
regulation of EGFR independent of its CNV.

Clinically relevant epigenetic programs
We next searched for epigenomic programs with potential clinical 
relevance. PITX3 regulon activity was notably higher in GBM cancer 
cells (FDR = 0.002) than in OPCs (Supplementary Table 4c). Regu-
lon activity scored using bulk RNA-seq expression data in TCGA 
patients with GBM showed that increased PITX3 activity was associ-
ated with poor progression-free survival (hazard ratio (HR) = 1.86, 
log-rank P = 0.00076) and poor overall survival (HR = 1.84, log-rank 
P = 0.00085) (Fig. 5d and Supplementary Table 9a,b). In the TCGA-PDAC 
cohort, increased KLF6 regulon activity was also associated with poor 
progression-free and overall survival (Fig. 5d and Supplementary 
Table 9a,c). This observation is corroborated by our earlier findings 
of increased KLF6 regulon activity and its motif accessibility (Fig. 3b), 
and also increased gene expression and enhancer accessibility linked 
to KLF6 (Fig. 2d) in primary PDAC cancer cells compared with in 
ductal-like-2 cells. By contrast, the tissue-specific regulons E2F8 (CRC) 
and BACH2 (GBM) had higher scores in the respective CNCs (Supple-
mentary Table 4c) and were linked to better survival in the TCGA-CRC 
and TCGA-GBM cohorts, respectively (Extended Data Fig. 10c and Sup-
plementary Table 9b,d).

We further investigated the impact of human papillomavirus (HPV) 
status on the landscape of active TFs (Methods and Supplementary 
Table 1b). We observed a marked decrease in KLF4 regulon activity in 
HPV-positive tumours compared with in HPV-negative tumours in this 
study, which was further validated in the TCGA-HNSCC cohort (Fig. 5e 
and Supplementary Table 9e). We identified additional regulons with 
potentially altered activity in HPV-positive HNSCC samples compared 
with their HPV-negative counterparts (Supplementary Table 9e). Fur-
thermore, we identified CDX1, EGR1 and TBX21 as additional factors 
affecting the overall survival in patients of the TCGA-HNSCC cohort 
(Methods and Extended Data Fig. 10d). Specifically, patients with 
increased TBX21 regulon activities tend to have a better survival, 
whereas increased CDX1 and EGR1 portends poorer prognosis.

Finally, to evaluate for therapeutically relevant genetic and epige-
netic alterations, we identified cancer-specific DEGs and DACRs that are 
potential drug targets (Methods). Among druggable DEGs and DACRs, 
we observed some well-known examples, including ESR1 expression 
and accessibility in BRCA and UCEC and VEGFA accessibility in ccRCC 
and CRC (Extended Data Fig. 10e,f). Moreover, we observed instances 
of known drug targets enriched in cancer types for which these targets 
are not used in clinical practice. Among these were EGFR accessibility 
in ccRCC, TOP1 expression in UCEC, MM and ccRCC, and FGFR2 expres-
sion in GBM, ccRCC and basal BRCA. These associations may indicate 
targets that could be used therapeutically in these tumour types and 
warrant further preclinical validation.

Discussion
We created and investigated a large-scale single-cell multi-omic atlas 
of tumours and NATs from 225 samples across 11 cancer types, unveil-
ing diverse cancer and normal tissue cell types. Advancing beyond 
previous bulk ATAC/RNA-seq studies, our analysis provides nuanced 
insights into cancer biology, including cancer-specific epigenetic 
architecture, relationships between normal and malignant cells, and 
primary-to-metastatic transitions in the same lineage. We identified 
CNC types on the basis of shared chromatin accessibility patterns with 



440 | Nature | Vol 623 | 9 November 2023

Article

cancer cells, which may be suggestive of cell lineage and underscores 
the importance of epigenetic architecture in determining cell-of-origin, 
as well as offering important insights into the transition from normal 
cells to cancer. Identification of changes in chromatin accessibility 
between primary and metastatic cancers of the same type and com-
parison across tumour types highlighted both commonalities and 
distinctions in chromatin landscape and epigenetic programs govern-
ing cancer progression across cancer types.

Chromatin accessibility differences between primary and metastatic 
tumours may hint at ways to interrupt metastatic transition. GATA6 
TF motifs are depleted in open chromatin and GATA6 expression is 
decreased in metastatic PDAC compared with primary PDAC. Further-
more, GATA6 regulon activity decreases in PDAC, CRC, OV and UCEC 
primary cancer cells compared with their respective CNCs. GATA6 loss 
in PDAC induces an EMT phenotype and is associated with basal subtype 
and decreased overall survival, consistent with this finding43. We iden-
tified many putative epigenetic drivers that have not been previously 
reported and cis-regulatory elements that correlate with important 

TFs. We also identified proximal and distal enhancers that are linked to 
ASAP2 upregulation in primary PDAC cells, which promotes cell migra-
tion and tumour growth in vitro and in PDAC xenograft models27, as well 
as identifying genetic drivers (TP53 mutant in BRCA) that influence 
the chromatin accessibility of genes that are involved in cell motility, 
invasion and proliferation (GDF15 and FGD3). Integrated analysis of 
bulk WES, snRNA-seq and snATAC-seq in this study further highlights 
the allele-specific chromatin accessibility effect of TERTp mutations 
across cancers. The finding of strong associations between cancer 
drivers, such as EGFR, KRAS and MET and their associated enhancers, 
further stresses the importance of epigenetic and genetic interaction 
during tumorigenesis. Further functional validation will shed light on 
key regulatory pathways in cancer (Supplementary Note 8).

Understanding the landscape of chromatin architecture across 
tumours, chromatin accessibility changes at critical cancer transitions, 
and the interplay between chromatin accessibility, genetic alterations 
and transcriptional patterns is crucial to advancing cancer biology 
and clinical practice. Certain changes in chromatin accessibility that 
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represent critical events/drivers of cancer initiation and metastatic 
spread may be potential therapeutic targets. Although TFs them-
selves are very difficult to target with traditional therapeutics and 
their many-varied roles in normal tissues raise concerns for off-target 
effects, we highlighted potentially targetable elements by focusing on 
broad transcriptional programs. Finally, we anticipate that this atlas 
will be a valuable resource for future cancer studies.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06682-5.

1. Stadhouders, R., Filion, G. J. & Graf, T. Transcription factors and 3D genome conformation 
in cell-fate decisions. Nature 569, 345–354 (2019).

2. Esteller, M. Epigenetics in cancer. N. Engl. J. Med. 358, 1148–1159 (2008).
3. Butera, A., Melino, G. & Amelio, I. Epigenetic “drivers” of cancer. J. Mol. Biol. 433, 167094 

(2021).
4. Alonso-Curbelo, D. et al. A gene–environment-induced epigenetic program initiates 

tumorigenesis. Nature 590, 642–648 (2021).
5. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of 

native chromatin for fast and sensitive epigenomic profiling of open chromatin, 
DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

6. Corces, M. R. et al. The chromatin accessibility landscape of primary human cancers. 
Science 362, eaav1898 (2018).

7. Zhao, Y. et al. Bibliometric analysis of ATAC-Seq and its use in cancer biology via nucleic 
acid detection. Front. Med. 7, 584728 (2020).

8. Zhang, K. et al. A single-cell atlas of chromatin accessibility in the human genome. Cell 
184, 5985–6001 (2021).

9. Domcke, S. et al. A human cell atlas of fetal chromatin accessibility. Science 370, 
eaba7612 (2020).

10. Wu, Y. et al. Epigenetic and transcriptomic characterization reveals progression markers 
and essential pathways in clear cell renal cell carcinoma. Nat. Commun. 14, 1681 (2023).

11. Yao, L. et al. Single-cell discovery and multi-omic characterization of therapeutic targets 
in multiple myeloma. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-22-1769 (2023).

12. Wang, L.-B. et al. Proteogenomic and metabolomic characterization of human glioblastoma. 
Cancer Cell 39, 509–528 (2021).

13. Cui Zhou, D. et al. Spatially restricted drivers and transitional cell populations cooperate 
with the microenvironment in untreated and chemo-resistant pancreatic cancer. Nat. 
Genet. https://doi.org/10.1038/s41588-022-01157-1 (2022).

14. Chen, C. & Shan, H. Keratin 6A gene silencing suppresses cell invasion and metastasis of 
nasopharyngeal carcinoma via the β-catenin cascade. Mol. Med. Rep. 19, 3477–3484 
(2019).

15. Wong, S., Hong, W., Hui, P. & Buza, N. Comprehensive analysis of PAX8 expression in 
epithelial malignancies of the uterine cervix. Int. J. Gynecol. Pathol. 36, 101–106 (2017).

16. Soriano, A. A. et al. PAX8 expression in high-grade serous ovarian cancer positively 
regulates attachment to ECM via integrin β3. Cancer Cell Int. 19, 303 (2019).

17. Mikulasova, A., Morgan, G. J. & Walker, B. A. Chromosomal abnormalities in multiple 
myeloma. Nat. Rev. Dis. Primer 8, 42 (2022).

18. Person, F. et al. Prevalence of βIII-tubulin (TUBB3) expression in human normal tissues 
and cancers. Tumor Biol. 39, 1010428317712166 (2017).

19. Yu, Z. et al. High expression of HOXA4 in patients with glioma indicates unfavorable 
clinical outcomes. Cell Cycle 21, 2387–2402 (2022).

20. Zhao, X. et al. FGFR4 provides the conduit to facilitate FGF19 signaling in breast cancer 
progression. Mol. Carcinog. 57, 1616–1625 (2018).

21. Miikkulainen, P. et al. Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) 
maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. J. Biol. Chem. 294, 
3760–3771 (2019).

22. Siemeister, G. et al. Reversion of deregulated expression of vascular endothelial growth 
factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein. 
Cancer Res. 56, 2299–2301 (1996).

23. Michaelis, M. et al. Reversal of P-glycoprotein-mediated multidrug resistance by the 
murine double minute 2 antagonist nutlin-3. Cancer Res. 69, 416–421 (2009).

24. Tanfin, Z., Serrano-Sanchez, M. & Leiber, D. ATP-binding cassette ABCC1 is involved in the 
release of sphingosine 1-phosphate from rat uterine leiomyoma ELT3 cells and late 
pregnant rat myometrium. Cell. Signal. 23, 1997–2004 (2011).

25. Holash, J. et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins 
and VEGF. Science 284, 1994–1998 (1999).

26. Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human 
hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).

27. Fujii, A. et al. The novel driver gene ASAP2 is a potential druggable target in pancreatic 
cancer. Cancer Sci. 112, 1655–1668 (2021).

28. Uchida, H., Kondo, A., Yoshimura, Y., Mazaki, Y. & Sabe, H. Pag3/Papα/Kiaa0400, a GTPase- 
activating protein for ADP-ribosylation factor (Arf), regulates Arf6 in Fcγ receptor- 
mediated phagocytosis of macrophages. J. Exp. Med. 193, 955–966 (2001).

29. Andreev, J. et al. Identification of a New Pyk2 target protein with Arf-GAP activity. Mol. 
Cell. Biol. 19, 2338–2350 (1999).

30. Ma, X.-L. et al. ASAP2 interrupts c-MET-CIN85 interaction to sustain HGF/c-MET-induced 
malignant potentials in hepatocellular carcinoma. Exp. Hematol. Oncol. 12, 38 (2023).

31. Nie, S. et al. PPARγ/SOD2 protects against mitochondrial ROS-dependent apoptosis via 
inhibiting ATG4D-mediated mitophagy to promote pancreatic cancer proliferation. Front. 
Cell Dev. Biol. 9, 745554 (2022).

32. Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments 
that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).

33. Chang, J. et al. EN1 regulates cell growth and proliferation in human glioma cells via 
hedgehog signaling. Int. J. Mol. Sci. 23, 1123 (2022).

34. Beltran, A. S., Graves, L. M. & Blancafort, P. Novel role of Engrailed 1 as a prosurvival 
transcription factor in basal-like breast cancer and engineering of interference peptides 
block its oncogenic function. Oncogene 33, 4767–4777 (2014).

35. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. 
Methods 14, 1083–1086 (2017).

36. Luo, Y. et al. New developments on the Encyclopedia of DNA elements (ENCODE) data 
portal. Nucleic Acids Res. 48, D882–D889 (2020).

37. Gordon-Weeks, A. et al. Tumour-derived laminin α5 (LAMA5) promotes colorectal liver 
metastasis growth, branching angiogenesis and notch pathway inhibition. Cancers 11, 
630 (2019).

38. Zhang, J. X. et al. MiR-29c mediates epithelial-to-mesenchymal transition in human 
colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling. 
Ann. Oncol. 25, 2196–2204 (2014).

39. Liu, W. et al. MiR-30b-5p functions as a tumor suppressor in cell proliferation, metastasis 
and epithelial-to-mesenchymal transition by targeting G-protein subunit α-13 in renal cell 
carcinoma. Gene 626, 275–281 (2017).

40. Zheng, H. & Kang, Y. Multilayer control of the EMT master regulators. Oncogene 33, 1755–1763 
(2014).

41. Han, H.-B. et al. PBX3 promotes migration and invasion of colorectal cancer cells via 
activation of MAPK/ERK signaling pathway. World J. Gastroenterol. 20, 18260–18270 (2014).

42. Subbalakshmi, A. R. et al. The ELF3 transcription factor is associated with an epithelial 
phenotype and represses epithelial-mesenchymal transition. J. Biol. Eng. 17, 17 (2023).

43. Martinelli, P. et al. GATA6 regulates EMT and tumour dissemination, and is a marker of 
response to adjuvant chemotherapy in pancreatic cancer. Gut 66, 1665 (2017).

44. Frisch, S. M., Farris, J. C. & Pifer, P. M. Roles of Grainyhead-like transcription factors in 
cancer. Oncogene 36, 6067–6073 (2017).

45. Paranjapye, A., Mutolo, M. J., Ebron, J. S., Leir, S.-H. & Harris, A. The FOXA1 transcriptional 
network coordinates key functions of primary human airway epithelial cells. Am. J. 
Physiol. Lung Cell. Mol. Physiol. 319, L126–L136 (2020).

46. Wang, C. et al. FOXN3 inhibits cell proliferation and invasion via modulating the AKT/MDM2/ 
p53 axis in human glioma. Aging 13, 21587–21598 (2021).

47. Zhao, C. et al. FOXN3 suppresses the growth and invasion of papillary thyroid cancer 
through the inactivation of Wnt/β-catenin pathway. Mol. Cell. Endocrinol. 515, 110925 
(2020).

48. Ling, J. et al. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward 
loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 21, 
105–120 (2012).

49. Bailey, M. H. et al. Comprehensive characterization of cancer driver genes and mutations. 
Cell 173, 371–385 (2018).

50. Osada, M. et al. A p53-type response element in the GDF15 promoter confers high 
specificity for p53 activation. Biochem. Biophys. Res. Commun. 354, 913–918 (2007).

51. Sasahara, A. et al. An autocrine/paracrine circuit of growth differentiation factor (GDF) 15 
has a role for maintenance of breast cancer stem-like cells. Oncotarget 8, 24869–24881 
(2017).

52. Willis, S. et al. High expression of FGD3, a putative regulator of cell morphology and 
motility, is prognostic of favorable outcome in multiple cancers. JCO Precis. Oncol. 
https://doi.org/10.1200/PO.17.00009 (2017).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.1038/s41586-023-06682-5
https://doi.org/10.1158/0008-5472.CAN-22-1769
https://doi.org/10.1038/s41588-022-01157-1
https://doi.org/10.1200/PO.17.00009
http://creativecommons.org/licenses/by/4.0/


Article
Methods

Specimen data
All samples for MM, OV, BRCA, PDAC, UCEC, CRC, CESC/AD, SKCM 
and HNSCC, as well as 2 NATs for GBM and 1 NAT for ccRCC were 
collected with informed consent in concordance with Institutional 
Review Board (IRB) approval at the School of Medicine at Washing-
ton University in St Louis. IRB protocols were as follows: 201105374, 
201108117, 201407156, 202106166, 201911095, 201102270, 201103136 
and 201102312. Tumour samples were collected during surgi-
cal resection and verified by standard pathology. GBM and ccRCC 
samples originating from the NCI CPTAC were part of previous  
studies12,53.

Experimental methods
Nucleus lysis for snMultiome-seq. Approximately 20–30 mg of 
flash-frozen or cryopulverized or 200 μm of OCT sections of tissue 
from each sample was retrieved and aliquoted for nucleus preparation 
for the Chromium Next GEM Single Cell Multiome ATAC + Gene Expres-
sion sequencing protocol for simultaneously profiling epigenomic 
landscape and gene expression in the same individual nuclei. The 
samples were resuspended in lysis buffer (10 mM Tris-HCl (pH 7.4) 
(Thermo Fisher Scientific, 15567027), 10 mM NaCl (Thermo Fisher 
Scientific, AM9759), 3 mM MgCl2 (Thermo Fisher Scientific, AM9530G), 
NP-40 substitute (Sigma-Aldrich, 74385-1L), 1 M DTT (Sigma-Aldrich, 
646563), 10% stock BSA solution (MACS, 130-091-376), nuclease-free 
water (Invitrogen, AM9937), plus 0.1 U  μl−1 RNase Inhibitor), resus-
pended and homogenized using a pestle, and filtered through a 40 μm 
cell strainer (pluriSelect), then washed with wash buffer (2% BSA +  
1× PBS + RNase inhibitor). The filtrate was collected, then centrifuged 
at 500g for 6 min at 4 °C. The nuclear pellet was then resuspended in 
BSA wash buffer with RNase inhibitor, stained with 7AAD, and nuclei 
were purified and single-cell sorted using fluorescence-activated cell 
sorting (FACS). After counting and microscopy inspection of nucleus 
quality and concentration, nucleus suspensions were incubated in a 
transposition mix that included a transposase, while adapter sequenc-
es were simultaneously added to the ends of the DNA fragments and 
the preparation was diluted to 3,000–8,000 nuclei per μl to be used 
as one reaction for downstream preparation of both ATAC and gene 
expression preparation. About 20,000 nuclei were used for analysis 
using the Next GEM Single Cell Multiome ATAC + Gene Expression kit 
(10x Genomics) and gel beads in emulsion (GEMs) using the Chro-
mium Next GEM Chip J Single Cell Kit, 16 rxns (PN-1000230). After 
post GEM-RT cleanup, the pre-amplification step was performed and 
the pre-amplified product was used as the input for both ATAC library 
construction and cDNA amplification for gene expression library 
construction. cDNA amplification/tagging was performed with 16 
nucleotide barcodes and 10 nucleotide molecular identifiers during 
the reverse transcription (RT) reaction. After pre-amplification, the 
sample was divided and used as an input for two separate steps: 40 μl 
of the sample was used for ATAC library construction and 35 μl of the 
sample was used for cDNA amplification. Only 25% of the total cDNA 
was used for generation of GEX libraries for snRNA-Seq. Libraries were 
sequenced using the 10x Genomics Single Index N Set according to the 
manufacturer’s protocol for snATAC; and, for snRNA the 10x Genomics 
Dual Index TT Set A was used according to the manufacturer’s protocol 
for library preparation.

FACS analysis. Depending on the pellet size, 100–500 μl of nucleus 
suspension in the wash buffer (2% BSA + 1× PBS + RNase inhibitor) was 
stained with DRAQ5 or 7AAD for RNA or ATAC sequencing, respec-
tively. Specifically, snRNA-seq nuclei were stained with 1 μl of DRAQ5 
per 300 μl of the sample and snATAC-seq nuclei were stained with 1 μl 
of 7AAD per 500 μl of the sample. Sorting gates were based on size, 
granularity and dye staining signal.

Multiple myeloma single-cell suspension preparation and sequenc-
ing. Bone marrow mononuclear cell aliquots were centrifuged, after  
thawing, at 300g for 5 min to pellet cells. All supernatants were  
removed. To prepare cells for processing using the Miltenyi Dead Cell 
Removal Kit, cells were resuspended in 100 μl of beads and incubated at 
room temperature for 15 min. Cells were then run through the DepleteS 
selection using the autoMACS Pro Separator. The negative fraction 
(live cells) was pelleted by centrifugation at 450g for 5 min. Cells were 
finally resuspended in ice-cold phosphate-buffered saline (PBS) and 
0.5% BSA and loaded onto a 10x Genomics Chromium Controller. The 
samples were loaded using the 10x Genomics Chromium Next GEM 
Single Cell 3′ GEM, Library & Gel Bead Kit v2. Barcoded libraries were 
then pooled and sequenced on the Illumina NovaSeq 6000 system 
with associated flow cells.

Nucleus lysis for snRNA-seq and snATAC-seq. First, 15–25 mg of 
pulverized tissue was placed into a 5 ml Eppendorf tube on ice. Using 
a wide-bore pipette tip (Rainin), a lysis buffer prepared according 
to the nucleus-isolation protocol (10x Genomics) and SuperRNase 
inhibitor (Invitrogen) were added to the tube. The tissue solution 
was gently pipetted until the lysis liquid turned a slightly cloudy 
colour (the number of pipetting iterations depended on the specific 
tissue). The tissue homogenate was then filtered through a 40 μm 
strainer (pluriSelect) and washed with a BSA wash buffer (2% BSA + 1× 
PBS + RNase inhibitor). The filtrate was collected, centrifuged at 500g 
for 6 min at 4 °C and resuspended with a BSA wash buffer. Then, 100 μl 
of cell lysis solution was set aside as the unstained reference, and the 
rest was stained with 7AAD or DRAQ5 depending on the ATAC or RNA 
protocol. Nuclei underwent FACS and sorting gates were based on 
size, granularity and dye staining signal. The final suspension was 
centrifuged at 500g for 6 min at 4 °C and resuspended with a BSA wash 
buffer. More specific details about the RNA protocol can be found at 
protocols.io (https://doi.org/10.17504/protocols.io.14egn7w6zv5d/
v1 (RNA protocol); for the ATAC protocol, 7AAD was substituted  
for dye).

10x library preparation and sequencing of snRNA-seq and 
snATAC-seq. Nuclei and barcoded beads were isolated in oil drop-
lets using the 10x Genomics Chromium instrument. Single-nucleus 
suspensions were counted and adjusted to a range of 500 to 1,800 
nuclei per μl using a haemocytometer. Reverse transcription was 
subsequently performed to incorporate cell- and transcript-specific 
barcodes. All snRNA-seq samples were run using the Chromium Next 
GEM Single Cell 3’ Library and Gel Bead Kit v3.1 (10x Genomics). For 
snATAC-seq, the Chromium Next GEM Single Cell ATAC Library and Gel 
Bead Kit v1.1 prep (10x Genomics) was used for a subset of samples. 
For the multiome kit, the Chromium Next GEM Single Cell Multiome 
ATAC + Gene Expression kit was used. Barcoded libraries were then 
pooled and sequenced on the Illumina NovaSeq 6000 system with 
the associated flow cells.

Genomic DNA extraction. Tumour tissues and corresponding normal 
adjacent tissue were obtained from surgically resected specimens 
and, after a piece was removed for fresh single-cell preparation, the 
remaining sample was snap-frozen in liquid nitrogen and stored at 
−80 °C. Before bulk DNA extraction, the samples were cryo-pulverized 
(Covaris) and aliquoted for bulk extraction methods. Genomic DNA 
was extracted from tissue samples using either the DNeasy Blood and 
Tissue Kit (Qiagen, 69504) or the QIAamp DNA Mini Kit (Qiagen, 51304). 
Genomic germline DNA was purified from cryopreserved peripheral 
blood mononuclear cells using the QiaAMP DNA Mini Kit (Qiagen, 
51304) according to the manufacturer’s instructions (Qiagen). The 
DNA quantity was assessed by fluorometry using the Qubit dsDNA HS 
Assay (Q32854) according to manufacturer’s instructions (Thermo 
Fisher Scientific).

https://doi.org/10.17504/protocols.io.14egn7w6zv5d/v1
https://doi.org/10.17504/protocols.io.14egn7w6zv5d/v1


WES data generation. A total of 100–250 ng of genomic DNA was 
fragmented on the Covaris LE220 instrument targeting 250 bp  
inserts. Automated dual-indexed libraries were constructed using 
the KAPA Hyper library prep kit (Roche) on the SciClone NGS plat-
form (Perkin Elmer). Up to ten libraries were pooled at an equimolar 
ratio by mass before the hybrid capture targeting a 5 μg library pool. 
The library pools were hybridized using the xGen Exome Research 
Panel v1.0 reagent (IDT Technologies) that spans a 39 Mb target region 
(19,396 genes) of the human genome. The libraries were hybridized 
for 16–18 h at 65 °C followed by stringent wash to remove spuriously 
hybridized library fragments. Enriched library fragments were eluted 
and PCR cycle optimization was performed to prevent over ampli-
fication. The enriched libraries were amplified using the KAPA HiFi 
master mix (Roche) before sequencing. The concentration of each 
captured library pool was determined by quantitative PCR (qPCR) 
using the KAPA library Quantification Kit according to the manufac-
turer’s protocol (Roche) to produce cluster counts appropriate for 
the Illumina NovaSeq 6000 instrument. 2 × 150 bp paired-end reads 
were generated targeting 12 Gb of sequence to achieve around 100× 
coverage per library. Matching WES data were generated for 195 out 
of the 225 snATAC-seq samples. Of these 195 samples, tumour was 
available and used to generate 173 WES libraries corresponding to 176 
of the snATAC-seq samples.

Cell lines. The Caki-1 cell line was purchased from ATCC (ATCC, HTB-
46, https://www.atcc.org/products/htb-46) and authenticated using 
short-tandem-repeat (STR) profiling by ATCC. The MCF7 cell line was 
purchased from ATCC (ATCC, HTB-22, https://www.atcc.org/prod-
ucts/htb-22) and authenticated by STR profiling by ATCC. The U251 
cell line was obtained from a previous study54, and was authenticated 
by STR profiling. No cell line used in this paper is listed in the database 
of commonly misidentified cell lines maintained by the International 
Cell Line Authentication Committee (ICLAC). All of the cell lines used 
here tested negative for mycoplasma contamination using MycoAlert 
(Lonza, LT07-118).

CUT&RUN experiment. The Caki-1, MCF7 and U251 cell lines were 
cultured under designated conditions according to information on 
the American Type Culture Collection (ATCC) website (https://www.
atcc.org/). When cells reached the desired confluence and numbers, 
the CUT&RUN Kit (14-1048, EpiCypher) and CUT&RUN Library Prep 
Kit (14-1002, EpiCyher) were applied according to the manufactur-
er’s protocols. In brief, wash buffer, cell permeabilization buffer and  
antibody buffer were freshly prepared on day 1. ConA Beads were acti-
vated by washing and then diluted with a cold bead activation buffer. 
After these steps, 500,000 cells were collected for each reaction, fol-
lowed by resuspending in a wash buffer and mixing well with activated 
beads. After 10 min of incubation at room temperature, the tubes were 
placed on an 8-strip magnet until the slurries cleared. The supernatant 
was removed and a cold antibody buffer was added to each reaction. 
The SNAP-CUTANA K-MetStat Panel was first added to the reactions  
designed for positive (H3K4me3) and negative (IgG) control antibod-
ies. Then, 0.5 μg designated antibody was added to each reaction and 
incubated overnight. The next day, antibody-bound histone PTM or 
chromatin-interacting protein was washed with the cell permeabi-
lization buffer. Next, pAG-MNase was added to cleave target-DNA 
complexes. Targeted chromatin was then digested and released by 
adding calcium chloride, Escherichia coli spike-in DNA and Stop Buffer 
Master Mix. DNA was purified, and up to 5 ng CUT&RUN-enriched DNA 
was used for further library construction according to the CUTANA 
CUT&RUN Library Prep Kit. Library fragment sizes were analysed using 
the TapeStation and the libraries were sequenced.

The following antibodies were used in CUT&RUN analysis: anti-NRF1 
(46743, Cell Signalling Technology) and anti-CTCF (3418, Cell Signal-
ling Technology).

Validation using mouse models. The following mouse strains (Mus 
musculus) were used as part of this study: p48-Cre mice (C57BL/6J back-
ground; laboratory of S. Hingorani); LSL-KrasG12D mice (C57BL/6J 
background; Jackson Laboratory, 008179); Trp53 flox mice (C57BL/6J 
background; Jackson Laboratory, 008462). All animal studies were 
completed in accordance with NIH-AALAC standards and consistent 
with Washington University School of Medicine IACUC regulations 
(protocol, 22-0233), and studies were approved by Washington Uni-
versity School of Medicine Institutional Animal Studies Committee. All 
animals were housed in a barrier facility under a 12 h–12 h light–dark 
cycle with 1–5 mice per cage.

For mpIHC analysis of mouse PDACs, embedded tissues were sec-
tioned into 6 μm sections and loaded into BOND RXm (Leica Biosys-
tems) for a series of staining, including using antibodies against GATA6 
(Invitrogen, PA1-104) and CK19 (Cell Signaling Technology, 12434). On 
the basis of antibody host species, the default manufacturer protocols 
were used (IntenseR and Polymer Refine), including antigen retrieval 
with citrate buffer, goat serum and peroxide block; primary antibody 
incubation; post-primary incubation; and chromogenic visualization 
using an AEC substrate (Abcam). Between every two cycles of staining, 
the slides were manually stained with haematoxylin and eosin, then 
scanned using the Axio Scan.Z1 (Zeiss) system. The slides were then 
destained by a gradient of ethanol plus a 2% hydrochloride wash and 
blocked with extra avidin/biotin (Vector Laboratories) and a Fab frag-
ment block ( Jackson Laboratory). Citrate-based antigen retrieval was 
performed before each staining cycle. Images of the same specimen, 
but using different stains, were cropped into multiple segments using 
Zen (Zeiss). Each segment was then deconvoluted (Deconvolution, 
v.1.0.4; Indica Labs) for individual stains and fused using HALO software 
(Zeiss) with the default manufacturer’s settings. Markers of interest 
were pseudocoloured and quantified using the High Plex FL module 
within the HALO software.

Analytical methods
WES reads alignment. FASTQ files were preprocessed using trimGalore 
v.0.6.7 (with the parameter --length 36 and all of the other parameters 
set to default; https://github.com/FelixKrueger/TrimGalore). FASTQ 
files were then aligned to the GDC’s GRCh38 human reference genome 
(GRCh38.d1.vd1) using BWA-mem55 v.0.7.17 with parameter -M and all of 
the other parameters set to default. The output SAM file was converted 
to a BAM using samtools (https://github.com/samtools/samtools; 
v.1.14) view with parameter -Shb, and all of the other parameters set 
to default. BAM files were sorted and duplicates were marked using 
the Picard v.2.6.26 SortSam tool with the following parameters: CRE-
ATE_INDEX=true, SORT_ORDER=coordinate, VALIDATION_STRINGEN-
CY = STRICT, and all others set to default; and MarkDuplicates with the 
parameter REMOVE_DUPLICATES=true, and all others set to default. 
The final BAM files were then indexed using samtools v.1.14 index with 
all of the parameters set to the default.

Somatic mutation calling using bulk data. Somatic mutations were 
called from WES using the Somaticwrapper pipeline v.1.6 (https://
github.com/ding-lab/somaticwrapper), which includes four different 
callers, that is, Strelka (v.2.9.10)56, MUTECT (v.1.1.7)57, VarScan (v.2.3.8)58 
and Pindel (v.0.2.5)59. We kept the exonic single-nucleotide variants 
(SNVs) called by any two callers among MUTECT v.1.1.7, VarScan v.2.3.8 
and Strelka v.2.9.10, and indels called by any two callers among VarScan 
v.2.3.8, Strelka v.2.9.10 and Pindel v.0.2.5. For the merged SNVs and 
indels, we applied a 14× and 8× minimal coverage cut-off for tumour 
and normal, separately. We also filtered SNVs and indels by a mini-
mal variant allele fraction (VAF) of 0.05 in tumours and a maximal VAF 
of 0.02 in normal samples. We also filtered any SNV within 10 bp of 
an indel found in the same tumour sample. Finally, we rescued the 
rare mutations with VAF within 0.015 and 0.05 in ccRCC driver genes 
on the basis of an established gene consensus list49. In a downstream 
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step, Somaticwrapper combines adjacent SNVs into double-nucleotide 
polymorphisms (DNPs) using COCOON (https://github.com/ding-lab/
COCOONS): as the input, COCOON takes a MAF file from a standard 
variant calling pipeline. First, it extracts variants within 2 bp windows 
as DNP candidate sets. Next, if the corresponding BAM files used for 
variant calling are available, it extracts the reads (denoted as nt) span-
ning all candidate DNP locations in each variant set and counts the 
number of reads with all of the co-occurring variants (denoted as nc) to 
calculate co-occurrence rate (rc = nc/nt). If rc ≥ 0.8, the nearby SNVs will 
be combined into DNPs, and COCOON will update the annotation for 
the DNPs from the same codon based on the transcript and coordinate 
information in the MAF file. Finally, we rescued the rare mutations with 
VAF of [0.015, 0.05) in cancer driver genes based on the aforementioned 
gene consensus list49. Further analysis focused on cancer driver genes 
reported in the previous publications12,49,53,60–63.

Tumour-only somatic mutation calling using bulk data. For sam-
ples for which paired normal samples were not available, tumour-only  
somatic variants were called using the Mutect2 (tool from GATK 
v.4.1.2.0) tumour-only version of the Somaticwrapper pipeline  
(https://github.com/ding-lab/somaticwrapper/tree/tonly.v1.0) with 
the GDC panel of normal data (https://gdc.cancer.gov/about-data/
gdc-data-processing/gdc-reference-files; gatk4_mutect2_4136_pon.
vcf.tar). False positives were filtered out by retaining only variant sites 
with ≥20× coverage and >3 alternate allele supporting reads with ≥0.1 
alternate allele VAF. DNPs were again inferred using COCOON.

Manual genotyping. We used bam-readcount for both determining 
and for manually verifying the KRAS mutation status in bulk WES at 
KRAS hotspots Gly12, Gly13 and Gln61. For each case, we first applied 
bam-readcount to generate read counts for each of the nine bases (3 
codons times 3 bases per codon) at these loci and then calculated VAF 
values of all KRAS hotspots based on reference and alternative base 
read counts at each position. The only instance in which variants were 
not already identified by the Somaticwrapper pipeline was in PDAC. 
Owing to the well-known high rate of KRAS hotspot mutations in PDAC 
(>90%), any such mutations detected in PDAC during genotyping are 
automatically reported64.

To identify KRAS hotspot mutation status, we applied our in-house 
tool scVarScan that can identify reads supporting the reference and vari-
ant alleles spanning the variant site in each individual cell by tracing cell 
and molecular barcode information in each snRNA BAM file. For map-
ping, we used the Memorial Sloan Kettering Cancer Center Hotspots 
website (https://www.cancerhotspots.org) to obtain the most com-
mon KRAS hotspot mutations at Gly12, Gly13 and Gln61 and followed 
with scVarScan to detect potential minority KRAS mutations in each 
sample. For non-PDAC samples, hits were then filtered to high-quality 
mutant allele counts > 5.

CNV calling on bulk whole-exome data. Somatic copy-number 
variants were called using GATK (v.4.1.9.0)65. Specifically, the hg38  
human reference genome (NCI GDC data portal) was binned into target 
intervals using the PreprocessIntervals function, with bin-length set 
to 1,000 bp and using the interval-merging-rule of OVERLAPPING_
ONLY. A panel of normals (PON) was then generated using each nor-
mal sample as an input and the GATK functions CollectReadCounts 
with the argument --interval-merging-rule OVERLAPPING_ONLY, 
followed by CreateReadCountPanelOfNormals with the argument 
--minimum-interval-median-percentile 5.0. For tumour samples, 
reads that overlapped the target interval were counted using the GATK  
function CollectReadCounts. Tumour read counts were then stand-
ardized and de-noised using the GATK function DenoiseReadCounts, 
with the PON specified by --count-panel-of-normals. Allelic counts for 
tumours were generated for variants present in the af-only-gnomad.
hg38.vcf according to GATK best practices (variants further filtered 

to 0.2 > af > 0.01 and entries marked with ‘PASS’) using the GATK 
function CollectAllelicCounts. Segments were then modelled using 
the GATK function ModelSegments, with the denoised copy ratio 
and tumour allelic counts used as inputs. Copy ratios for segments 
were then called on the segment regions using the GATK function  
CallCopyRatioSegments.

Bedtools66 intersection was used to map copy-number ratios from 
segments to genes and assign the called amplifications or deletions. 
For genes overlapping multiple segments, a custom Python script 
was used to call that gene as amplified, neutral or deleted based on a 
weighted copy-number ratio calculated from copy ratios of each seg-
ment overlapped, the lengths of the overlaps and the z-score threshold 
used by the CallCopyRatioSegments function. If the resulting z-score 
cut-off was within the range of the default z-score thresholds used by 
CallCopyRatioSegments (v.0.9,1.1), then the bounds of the default 
z-score threshold were used instead (replicating the logic of the Call-
CopyRatioSegments function).

To map copy-number ratios from segments to chromosome arms, 
another script was used according to the same approach to then call 
that chromosome arm as amplified, neutral or deleted. Due to the 
increased read depths associated with ccRCC and GBM, the PON used 
for GBM and ccRCC samples was composed exclusively of all of the 
normal samples from those cancers. The PON used for all other cancer 
types was compiled from all the normal samples across those remain-
ing cancer types.

Sequencing read alignments and quality control of sc/snRNA-seq 
data. To process sequenced sc/snRNA-seq samples, Cell Ranger 
(v.6.0.2) from 10x Genomics (with Count functionality) was used for 
aligning reads to the prebuilt GRCh38 genome reference v.2020-A 
(refdata-gex-GRCh38-2020-A). The resulting gene-by-cell unique  
molecular identifier (UMI) count matrix was used by the R package Seu-
rat (v.4.0.5)67 for subsequent processing. Paired samples were required 
to be from the same tissue piece as an snATAC-seq sample and they were 
generated from single nuclei, with the exception of MM samples, which 
were generated from single cells. Processed sc/snRNA-seq samples were 
selected, provided that they met the filtering criteria detailed below. 
The CellRanger report from each sample was then carefully evaluated 
and we included samples with no critical errors or warnings. Examples 
of errors for which samples were excluded were as follows: ‘Error: low 
fraction reads confidently mapped to transcriptome’ or ‘Error: GEX 
reads mapping to transcriptome is low’. Furthermore, samples were 
excluded for less than 700 median genes per cell (except in certain 
cases in which a high number of cells was detected).

Quality filters were applied to the data to remove barcodes that fell 
into any of the following categories: possible debris with too few genes 
expressed (<200) and too few UMIs (<1,000), possible more than one 
cell with too many genes expressed (>10,000) and too many UMIs 
(>80,000), possible dead cell or a sign of cellular stress and apoptosis 
with too high proportion of mitochondrial gene expression over the 
total transcript counts (>10%) and cells predicted to be doublets by 
Scrublet, as described below. The cut-offs for these filters were based 
on recommendations in the Seurat package documentation.

Normalization, feature selection, dimensionality reduction and 
clustering of sc/snRNA-seq data. The filtered gene-count matrix was 
scaled and normalized for sequencing depth using Seurat’s ‘SCTrans-
form’ function (with the parameters: vars.to.regress = c(“nCount_RNA”, 
“percent.mito”), return.only.var.genes = F, and all others set to default). 
From this, the principal components were calculated using the Seurat 
RunPCA function. Cells were clustered using a graph-based cluster-
ing (default of Seurat) approach. First, we used the Seurat function 
FindNeighbors to embed cells in a k-nearest neighbour graph struc-
ture, based on the Euclidean distance in principal component analysis 
(PCA) space, with edges drawn between cells having similar expression 
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patterns. We used the previously defined first 30 principal components 
(PCs) as inputs to the function, while other parameters were left as 
defaults. To cluster cells, we then applied modularity optimization 
techniques (using the default Louvain algorithm from the Seurat func-
tion FindClusters) to iteratively group cells together to optimize the 
standard modularity function. We set the resolution parameter at 0.5, 
while other parameters were left as defaults.

Identification of doublets in sc/snRNA-seq. For the removal of 
doublets, the Python package Scrublet v.0.2.3 was used to identify 
doublets from the filtered cellranger gene-by-cell UMI count matrix. 
The initial Scrublet object was generated from the filtered CellRanger 
gene-by-cell UMI count matrix using the Scrublet function (parameters: 
expected_doublet_rate=0.15 and random_state set to a random inte-
ger between 0 and 1,000,000). Cells were assigned doublet scores 10 
times for each individual sample using the scr.scrub_doublets function  
(parameters: min_counts=2, log_transform=True). In the final iteration, 
the random_state of the scrublet object is set to 0. After each itera-
tion, cells are clustered on doublet scores using the KMeans object 
(with parameters: n_clusters=2, init=‘k-means++’, n_init=10, and max_
iter=10000) and fit_predict method using the Python package sklearn 
v.0.24.2. The boundary between the doublet and singlet clusters after 
all iteration is then averaged to determine the final doublet cut-off, 
which is then used by the Scrublet call_doublets function to predict a 
cell’s doublet status.

Merging of sc/snRNA-seq data across samples. Cancer-cohort-level 
objects were generated using the Seurat function merge to combine sc/
snRNA-seq samples objects after quality control. Barcodes annotated 
as doublets were removed from all of the samples before merging. Once 
merged, objects were normalized using the Seurat SCTransform func-
tion with the same parameters as when normalizing individual objects. 
Cells were then clustered using the top 50 PCA dimensions using the 
FindNeighbors and FindClusters functions with Resolution=0.5. To 
generate the merged pan-cancer objects (containing all cell types, or 
tumour and selected normal cell types; Extended Data Fig. 2c,f), the 
same steps were taken starting from the cancer cohort objects. To make 
a merged object with all cell types, 600 cells were randomly sampled 
for each cohort-level cluster, and the resulting set of cells was used for 
merging. The resulting normalized matrices of merged objects were 
used for subsequent analysis.

Cell type annotation of sc/snRNA-seq data. We curated from the 
literature a list of well-known markers (Supplementary Table 1e and 
Supplementary Fig. 2c–f). Using the integrated sc/snRNA-seq data of all 
cells from each cancer type at a time, we filtered the marker genes down 
to those that were expressed in at least 5% of at least one cluster. We then 
labelled each cluster with cell type names by examining the expression 
values and the percentages expressed of all the filtered marker genes 
across all clusters (using the Dotplot function of the Seurat package). 
Finally, we also validated cancer cell type annotation using inferCNV 
results (Supplementary Fig. 2b). Detailed normal epithelial cell annota-
tion was also performed using the expression of known markers (see 
normal pancreas cell, normal colon cell and normal kidney cell markers 
in Supplementary Table 1e). First, we isolated and reclustered normal 
epithelial cells from the PDAC, CRC and ccRCC cancer types, then we 
evaluated the expression of marker genes across clusters (using the 
Dotplot function of the Seurat package).

BRCA sample basal and non-basal subtype annotation. It was pre-
viously reported that BRCA samples of basal and non-basal subtypes 
tend to have different chromatin accessibility landscapes6. To annotate 
samples with basal and non-basal subtypes, we used two methods. First, 
we checked the expression of PAM50 genes68 across tumour cells of each 
sample using snRNA-seq data (Supplementary Fig. 7). We examined the 

per-sample expression of those markers using the DotPlot function of 
the Seurat package and found specific expressions of PAM50 signatures 
across samples. We next performed correlation analysis based on TF 
motif accessibility scores from snATAC-seq data. For this, we used TF 
scores averaged across cancer cells of each sample (Supplementary 
Fig. 8). We observed two clusters of samples, corresponding to samples 
of basal and non-basal subtypes. These two orthogonal approaches pro-
duced similar results, and we used the resulting annotation to separate 
BRCA samples into basal and non-basal groups.

InferCNV analysis. To detect large-scale chromosomal CNVs using sc/
snRNA-seq data, inferCNV v.0.99.7 was used with the default param-
eters recommended for 10x Genomics data. InferCNV was run at the 
sample level and only with post-quality-control filtered data using the 
raw counts matrix. To run inferCNV on all samples, it was necessary to 
set ‘ulimit -s unlimited’ in the bash environment followed by defining 
options (expressions=500000) within R. For specific samples, when 
the hidden Markov model did not converge with these changes, it was 
necessary to use inferCNV v.1.11.2. Once finished, copy ratio calls for all 
genes in a cell were gathered from the hidden Markov model outputs. 
For snATAC-seq inferCNV was run in an identical manner as to the sc/
snRNA-seq calls using the filtered gene accessibility by cell matrix.

scVarScan mutation mapping. We applied an in-house tool called 
scVarScan, which can identify reads supporting the reference allele 
and variant allele covering the variant site in each individual cell by 
tracing cell and molecular barcode information in a sc/snRNA-seq 
BAM file. The tool is freely available at GitHub (https://github.com/
ding-lab/10Xmapping). For mapping, we used high-confidence somatic 
mutations from WES data.

Identifying differentially expressed genes using sc/snRNA-seq data. 
To perform differential expression analysis, we used the FindMarkers 
function from the Seurat package with default Wilcoxon rank-sum test-
ing. For all DEG analysis, we used a merged object containing selected 
normal and cancer cells from all cancers. First, to identify tissue- and 
cancer-cell specific DEGs, we compared cancer cells from each tumour 
type to the combined set of cancer cells from all other tumours. We 
specified the following parameters: min.pct=0.1, min.diff.pct=0, logfc.
threshold=0 and only.pos=T. Next, to identify cancer cell-specific DEGs, 
we performed the comparison between cancer cells and their closest 
normal cell type (Fig. 1c) for each cancer. For this analysis, we used 
cancer cells from primary tumours only. Moreover, we specified the 
following parameters: min.pct=0.05, min.diff.pct=0, logfc.threshold=0 
and only.pos=F. Finally, to identify metastasis-associated DEGs, we 
compared neoplastic cells from primary tumours versus neoplastic 
cells from metastatic tumours from four cohorts used in the analysis 
(CRC, PDAC, SKCM and UCEC). The following parameters were speci-
fied: min.pct=0.1, min.diff.pct=0, logfc.threshold=0 and only.pos=F. 
For all DEG analysis, Bonferroni correction was applied for P value 
adjustment using all genes from each comparison, and DEGs were 
considered to be significant if they had an adjusted P < 0.05.

Gene regulatory network analysis using SCENIC. To infer gene regu-
latory networks, we used the SCENIC pipeline pySCENIC command line 
interface version (v.0.11.2)35. We ran SCENIC on an SCT-normalized assay 
of sampled sc/snRNA-seq merged object, 200 cells sampled randomly 
per cell type of each sample. For the first step we used the GRNBoost2 
method, as it is suggested for large scale datasets. For the input, we 
provided the list of unique TFs that are present in JASPAR2020 db69. 
Steps 2 and 3 of regulon prediction were run with the default parameters 
using the RcisTarget hg38_refseq-r80 v.9 gene-motif ranking databases 
(10 kb around the TSS, and 500 bp around the TSS). As the first step of 
the SCENIC pipeline is using a stochastic gradient boosting algorithm, 
it is suggested by the developers to run it multiple times and to filter 
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TFs and their targets to those that were reported across multiple itera-
tions70. Consequently, we ran the SCENIC pipeline ten times and filtered 
TFs and their targets to those that appeared in at least 80% of SCENIC 
runs. We then recalculated AUC scores for the resulting regulons using 
the AUCell (v.1.19.1) R package. Finally, we filtered regulons to those that 
contain at least 20 target genes. By using this approach, we were able 
to obtain a more stable set of regulons that are active in our dataset.

To prioritize regulons for Fig. 3a, we first conducted a differential 
analysis comparing neoplastic cells from each cancer versus neoplastic 
cells from all other cancers (primary tumours only), using regulons’ 
AUC scores. For this, we used a two-sided Wilcoxon test, and the result-
ing P values were adjusted using the Benjamini–Hochberg FDR method. 
We selected regulons that were both significant (FDR < 0.05) and that 
also met the following criteria: fold change between the two groups of 
greater than 1.5 and the mean score in cell group 1 exceeding the median 
of mean scores across all cell groups. The top 10 such regulons with the 
highest fold change were selected in each cancer type. If there were 
less than 10 regulons that passed these criteria, then all regulons were 
taken for that cancer type. We also added the following regulon–cancer 
pairs that were supported by comparing TF scores for the same cells’ 
group analysis using snATAC-seq data: KLF6 in PDAC, NRF1 in GBM, 
RARA in BRCA (non-basal), MXI1 in ccRCC, E2F7 in GBM and ELF3 in 
PDAC. Next, to annotate regulons as tissue- or cancer-cell-specific, we 
performed differential regulon analysis between tumour cells and their 
CNCs for each cancer type. For this, we used a two-sided Wilcoxon test, 
and the resulting P values were adjusted using the Benjamini–Hoch-
berg FDR method. The regulon was annotated as cancer-cell-specific 
if FDR < 0.05, the difference in scores between these groups was >0.01 
and log2[FC] > 0.1.

Pathway analysis using sc/snRNA-seq data. For the analysis of the 
pathways’ activities across regulon gene targets (Extended Data Fig. 6e), 
we used the sets of genes per tissue- and cancer-cell-specific regulons 
that were also DEGs in the same cancer (Supplementary Table 2b). We 
then calculated pathway activity scores using the Jaccard index between 
the sets of resulting regulons’ targets and the sets of genes from hall-
mark MSigDB71 pathways. We further performed over-representation 
analysis using hypergeometric test from the fgsea R package. P values 
were adjusted using Benjamini–Hochberg FDR correction.

Sequencing read alignments of snATAC-seq and snMultiome-seq. 
To process sequenced snATAC-seq and snMutiome-seq data, we used 
the CellRanger-atac count (v.2.0, 10x Genomics) and CellRanger-arc 
count (v.2.0, 10x Genomics) pipelines, respectively. These pipelines 
filter and map snATAC-seq reads and identify transposase cut sites, 
and the CellRanger-arc pipeline also performs filtering and align-
ment of snRNA-seq reads. The GRCh38 human reference was used 
for the read mapping (refdata-cellranger-arc-GRCh38-2020-A-2.0.0). 
Owing to low snRNA-seq quality, the snATAC-seq part of some 
snMultiome-seq samples was separately run with the modified version 
of CellRanger-atac v.2.0, which had ATAC cell barcodes replaced with 
snMultiome-seq barcodes. In particular, the snMultiome-seq barcode 
file cellranger-arc-2.0.0/lib/python/atac/barcodes/737K-arc-v1.txt was 
copied into CellRanger-atac directory cellranger-atac-2.0.0/lib/python/
barcodes/ and renamed to 737K-cratac-v1.txt. The CellRanger report 
from each sample was carefully evaluated and we excluded samples 
with few errors, except the ‘Number of cells is too high’ error, while 
retaining samples with no errors or with just warnings. Examples of 
errors for which we removed samples are as follows: ‘ATAC high-quality 
fragments in cells is low’, ‘ATAC TSS enrichment is low’ and ‘ATAC frag-
ments in peaks is low’.

Peak calling for snATAC-seq data. To call peaks on snATAC-seq data 
(from regular snATAC-seq and from snMultiome-seq), we used the 
MACS2 tool (v.2.2.7.1)72 through the CallPeaks function of the Signac 

package (v.1.3.0, https://github.com/timoast/signac). We further  
removed peaks from the Y chromosome, as well as those overlapping 
genomic regions containing ‘N’. All peaks were resized to 501 bp cen-
tred at the peak summit defined by MACS2. We next performed the 
iterative removal procedure described previously6 to get the set of 
non-overlapping peaks. In brief, we start with retaining the most signifi-
cant peak by MACS2 peak score (−log10[q]), removing all peaks that have 
direct overlap with it. We repeat this procedure for the remaining peaks, 
until we have the set of non-overlapping peaks. The resulting sample 
peak set was used to calculate peak-count matrix using FeatureMatrix 
from the Signac package, which was also used for downstream analysis.

Quality control of snATAC-seq data. Quality-control filtering of 
the snATAC-seq datasets was performed using functions from the 
Signac package. Filters that were applied for the cell calling include: 
1,000 < number of fragments in peaks < 20,000; percentage of reads 
in peaks > 15; ENCODE blacklist regions percentage < 0.05 (https://
www.encodeproject.org/annotations/ENCSR636HFF/); nucleosome 
banding pattern score < 5; and enrichment-score for Tn5-integration 
events at transcriptional start sites > 2. Open chromatin regions were 
annotated with the R package ChIPseeker (v.1.26.2)73 using transcript 
database TxDb.Hsapiens.UCSC.hg38.knownGene. The promoter region 
was specified (−1000,100) relative to the TSS.

Normalization, feature selection, dimensionality reduction and 
clustering of snATAC-seq data. The filtered peak-count matrix was 
normalized using term frequency-inverse document frequency (TF-IDF) 
normalization implemented in the Signac package. This procedure 
normalizes across cells, accounting for differences in coverage across 
them and across peaks, giving higher values to the rarer peaks. All peaks 
were used as features for dimensional reduction. We used the RunSVD 
Signac function to perform singular value decomposition on the nor-
malized TF-IDF matrix, a method that is also known as latent semantic 
indexing (LSI) dimension reduction. The resulting 2:30 LSI components 
were used for nonlinear dimensionality reduction using the RunUMAP 
function from the Seurat package. The nuclei were clustered using a 
graph-based clustering approach implemented in Seurat. First, we 
used the Seurat function FindNeighbors to construct a shared near-
est neighbour graph using the 2:30 LSI components. We next used 
the FindClusters function to iteratively group nuclei together while 
optimizing modularity using the Louvain algorithm.

Quality control, normalization, feature selection, dimensionality  
reduction and clustering of snMutiome-seq data. For snMultiome-seq 
data containing profiles of both snRNA- and snATAC-seq data, we first 
performed separate processing and filtering of cells using the same 
steps as were described for the processing of separate sc/snRNA-seq 
and snATAC-seq assays. To obtain the final list of barcodes, we retained 
the cells that passed the quality control filters in both the snRNA- 
and snATAC-seq assays. In the result, we obtained filtered gene- and 
peak-count matrices for the same set of cells. We then performed TF-IDF 
normalization of the peak-count matrix, followed by LSI dimension-
ality reduction using the RunTFIDF and RunSVD Signac functions. 
For normalization and dimensionality reduction of the gene-count 
matrix, we used the SCTransform and RunPCA functions of Seu-
rat with the same parameters as used for regular sc/snRNA-seq data  
processing.

We next computed the weighted nearest neighbour (WNN) graph 
with the FindMultiModalNeighbors function using both data modali-
ties. We used 1:30 PCA components from snRNA-seq and 2:30 LSI 
components from snATAC-seq for this analysis. We performed non-
linear dimensionality reduction of the resulting WNN graph using the 
RunUMAP function of Seurat. Finally, we obtained clusters with the 
FindClusters function using the WNN graph, setting the argument 
algorithm = 3 (SLM).

https://github.com/timoast/signac
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Identification of doublets in snATAC-seq and snMultiome-seq  
samples. To identify doublets in snATAC-seq data, we used the  
Python package Scrublet v.0.2.3 on the filtered cellranger peak-by-cell 
UMI count matrix. The processing steps were the same as for doublet 
identification in sc/snRNA-seq. To assign doublets for snMultiome-seq 
barcodes, we performed doublet identification separately on the  
filtered CellRanger peak-by-cell and gene-by-cell UMI count matrices. 
We annotated a barcode as a doublet if it was identified as a doublet by 
using both assays.

Merging of snATAC-seq data across samples (cohort-level objects). 
To create snATAC-seq cohort-level merged objects, functions from the 
Signac and Seurat packages were used. To normalize peak significance 
scores across samples and cancers, we converted MACS2 peak scores 
(−log10[q]) to a score per million as described previously6. To get the set 
of peaks for merging, we first combined peaks from all of the samples 
for each cohort separately. For overlapping peaks in each cohort, we 
performed an iterative removal procedure, the same as was used for 
creating individual sample peak sets, using normalized peak scores as  
described above. Using this procedure, we obtained the cancer-type- 
level peak sets. To gain the pan-cancer set of non-overlapping peaks, 
we renormalized peak scores using the score per million normaliza-
tion procedure described above and performed the same iterative 
removal procedure for the combined cohort-level peak set from all 
11 cancer types. The resulting list of pan-cancer peaks was quantified 
in each cohort using the FeatureMatrix Signac function, so that the 
resulting peak-cell matrices had the same set of features in all of the 
samples processed.

To merge snATAC-seq datasets, the merge function of the Seurat 
package was used. We next performed TF-IDF normalization and 
LSI-dimensionality reduction using the RunSVD function from the Sig-
nac package. Non-linear dimensionality reduction was performed using 
the RunUMAP function with 2:50 LSI components. For analysis involving 
CNC, we also created two additional merged objects (HNSCC-CESC/
AD and UCEC/OV), so that they contain CNC for the HNSCC and OV 
cohorts, respectively.

Merging of snATAC-seq data across cancers (pan-cancer-level 
objects). For the analysis involving comparisons between cancers, 
we aimed to create a pan-cancer-level merged object. To reduce the 
computational complexity, we subsetted tumour and selected normal 
cell types for each cohort that can be the putative cell-of-origin: luminal 
mature and luminal/basal progenitors for BRCA; oligodendrocytes, 
OPC and astrocytes for GBM; acinar and islet for PDAC; ciliated and 
secretory endometrial epithelial cells from UCEC; and other normal 
epithelial cells from all cohorts where they were available, and normal 
B cells from the MM cohort (Extended Data Fig. 2b,e). We further ran-
domly sampled 1,000 cells for each cohort-level cluster for this. We 
next used a merge procedure, followed by TF-IDF normalization and LSI 
dimensionality reduction using Seurat and Signac package functions. 
For nonlinear dimension reduction with the RunUMAP function, we 
used 2:150 LSI components. The resulting merged object normalized 
peak by cell matrix was used in the pan-cancer analysis and in the analy-
sis of TF motif accessibility differences (Extended Data Fig. 2b,e). We 
also made another merged object to compare chromatin-accessibility 
profiles across broad cell groups. To make this object, 600 cells were 
randomly sampled for each cohort-level cluster, and the resulting set 
of cells was used for merging, applying the same processing steps as 
described for the processing of the first pan-cancer merged object 
(Extended Data Fig. 2a,d).

Cell type annotation of snATAC-seq and snMultiome-seq data. 
For snMultiome-seq samples, cell labels were taken directly from 
snRNA-seq sample annotations. For regular snATAC-seq, the cell 
types of samples were first annotated with cell type label transfer 

using functions from Signac and Seurat. First, we quantified chro-
matin accessibility associated with each gene by summing the reads 
overlapping the gene body and its upstream region of 2 kb, therefore 
creating the gene by cell matrix. Coordinates for the genes were used 
from the Ensembl database v.86 (EnsDb.Hsapiens.v86 package). We 
next performed log-normalization of the resulting matrices using the 
NormalizeData function. The integration of paired snATAC-seq and 
sc/snRNA-seq datasets was performed using the FindTransferAnchors 
function with the canonical correlation analysis option for the dimen-
sionality reduction. We then used the TransferData function to transfer 
cell type labels from the sc/snRNA-seq dataset to the snATAC-seq data-
set using the obtained set of anchors from the previous step. The cell 
types were then re-evaluated at the cancer-type-merged object level, 
where, for each cluster, the cell type label was assigned by the most 
abundant cell type in that cluster. Cancer cell type annotation was also 
validated using inferCNV results (Supplementary Fig. 2b). Detailed 
normal epithelial cell type annotation was performed in sc/snRNA-seq 
space first. Then, for snMultiome-seq samples, cell labels were directly 
taken from snRNA-seq annotation and, for regular snATAC-seq samples, 
cell types were annotated with cell type label transfer using functions 
from Signac and Seurat.

Inference of closest normal cell type by tumour–normal association  
analysis. We set out to determine the CNCs for 10 cancer types  
(all except MM due to the lack of resolution, see below) that contained 
sufficient numbers of cells from 2 to 7 normal tissue cell types per can-
cer type. We divided the BRCA cohort samples based on basal versus 
non-basal subtypes as the two subtypes were reported to have dif-
ferent cells of origin74,75. To determine a CNC for each cancer, we did 
the following. We used a combined set of tissue- and cancer-specific 
DACRs (Supplementary Table 2a) or DEGs (Supplementary Table 2b) 
for snATAC-seq- and snRNA-seq-based calculations, respectively. For 
the resulting sets of genes and open chromatin regions, we calculat-
ed the average expression or accessibility for the pooled cells from 
the selected normal (potential cell of origin) cell types (Fig. 1c and 
Extended Data Fig. 4a), and cancer cells from each sample separately. 
We next calculated the Pearson correlation coefficient between each 
tumour and selected normal cell types from its tissue. Both data types 
produced similar patterns (Fig. 1c and Extended Data Fig. 4a), and we 
considered the cell type to be a CNC if it had a higher median of cor-
relation coefficients across tumour samples based on snATAC-seq data 
(Supplementary Table 2d).

On the basis of the above analysis, we defined CNCs for 10 cancers, 
and they were consistent with those reported in the previous stud-
ies: luminal mature cells for BRCA of non-basal subtypes74; luminal 
progenitor cells for BRCA of basal subtype74,75; ductal-like-2 cells for 
PDAC13,76–79; distal stem cells for CRC80; secretory endometrial epithelial 
cells for UCEC81 and OV; normal squamous cells for HNSCC and CESC; 
melanocytes for SKCM; proximal tubule cells for ccRCC82,83; and OPCs 
for GBM84,85. For MM, we used normal B cells as the CNC17. B cells are 
believed to acquire the initial CNV and structural variants during the 
class-switch recombination and somatic hypermutation process in a 
germinal centre. These abnormal B cells are believed to further dif-
ferentiate into plasma cells and give rise to MM17. We have significantly 
more B cells than normal plasma cells in our dataset and, as the initial 
tumorigenic events seem to occur in B cells, they were used as the CNC.

Identifying DACRs using snATAC-seq data. To perform analysis of 
differentially DACRs, we used the FindMarkers function of the Signac 
package (v.1.3) with logistic regression and the fraction of fragments 
in peaks used as a latent variable to reduce the effect of different  
sequencing depths across cells. P-value adjustment was performed 
using Bonferroni correction using all peaks in the dataset. We used the 
same groups of cells that were used for the identification of DEGs in the 
respective comparisons. To calculate the fold change for all DACRs, we 
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used an improved version of the FoldChange function in the Signac 
package (v.1.8).

First, to identify tissue- and cancer-cell-specific DACRs, we compared 
cancer cells from each tumour type to the combined set of cancer cells 
from all other tumours, using the merged pan-cancer object with cancer 
and selected normal cells. The following additional parameters were 
specified for the FindMarkers function: min.pct=0.1, min.diff.pct=0, 
logfc.threshold=0 and only.pos=T. ACRs that had inconsistent fold 
change direction between Signac v.1.3 and v.1.8 (n = 38) were removed.

Next, to identify cancer cell-specific DACRs (Fig. 1d and Extended 
Data Fig. 4b), we compared cancer cells from primary tumours with 
their closest normal cell types (CNCs; Fig. 1c) for each cancer using 
cohort-level merged objects for 9 out of 11 cancers for which CNCs were 
available. For HNSCC, we used the CESC/AD-HNSCC merged object that 
has normal squamous cells for this comparison (CNC for HNSCC) and, 
for OV cancer, we used the merged UCEC-OV object that had secretory 
endometrial epithelial cells (CNC for OV). Furthermore, we specified 
the following parameters for the FindMarkers function: min.pct=0.05, 
min.diff.pct=0, logfc.threshold=0 and only.pos=F. Furthermore, we 
wanted to exclude DACRs that were probably affected by CNVs. For 
this, we annotated DACRs with their closest genes (using the ChIPseeker 
package, as described above) and then calculated CNV scores for those 
genes using inferCNV results. CNV scores were calculated as the frac-
tion of cancer cells per cohort that had that gene amplified or deleted 
(AMP and DEL scores, respectively). We then filtered DACRs using the 
following criteria: with log2[FC] > 0 if AMP > 0.25 and for DACRs with 
log2[FC] < 0 if DEL > 0.25.

Finally, to identify DACRs associated with metastasis, we com-
pared cancer cells from primary tumours to cancer cells from meta-
static tumours from 4 cohorts (CRC, PDAC, SKCM and UCEC), using 
cohort-level merged objects. The following parameters were specified: 
min.pct=0.01, min.diff.pct=0, logfc.threshold=0 and only.pos=F. To 
select the DACRs for plotting (Extended Data Fig. 8a), we also calculated 
the sample-level fold change between cancer cells from each metastatic 
tumour and pooled cancer cells from all primary tumours of the same 
cancer. We further prioritized the top 200 DACRs, first by the highest 
fraction of metastasis samples with a positive fold change and then by 
the mean fold change across the samples.

Pathway enrichment analysis in DACRs. To calculate pathway 
activity from DACRs (Fig. 4d and Extended Data Fig. 4f), we used 
cancer-associated pathways from the hallmark gene sets of MSigDB71. 
We used the over-representation analysis function fora from the fgsea 
package (v.1.24.0) to perform hypergeometric tests with the universe 
set as all unified peaks detected. DACRs with positive fold changes 
in each cancer type were selected and then further filtered to have a 
positive fold change in at least 50% of the samples in the cancer type. 
To ensure a balanced comparison between cancer types, the number of 
DACRs used in the analysis is capped at the top 1,000 per cancer type in 
Extended Data Fig. 4f and the top 5,000 per cancer type in Fig. 4d on the 
basis of fold change. Each list of DACRs from a cancer type was tested 
with each gene set and the FDR was calculated for multiple-testing 
correction. The FDR of each test and the number of genes associated 
with DACRs in the test is reported in the corresponding bubble plot. 
The total numbers of DACRs associated with any genes in the gene set 
across cancer types are reported in the bar plots.

Visualizing the coverage of snATAC-seq data. For snATAC-seq cover-
age plots, we used the CoveragePlot function from the Signac package.

Calculation of TF motif scores using snATAC-seq data. To evaluate 
TF-binding accessibility profiles in the snATAC-seq data, we used the 
chromVAR tool (v.1.12.0)86, which calculates biased-corrected devia-
tions (TF motif scores) corresponding to gain or loss of accessibility 
for each TF motif relative to the average cell profile. We ran chromVAR 

using wrapper-functions from the Signac package with the default 
parameters and the JASPAR2020 database. Mapping of the TF motifs to 
the DACRs was performed using the motifmatchr R package. To identify 
TFs with differential activity between cell groups of snATAC-seq data, we 
used a two-sided Wilcoxon rank-sum test for the whole set of TFs in the 
assay, subsequently applying FDR correction to the resulting P values.

Identifying differentially accessible TF motifs using snATAC-seq 
data. We performed analysis of differentially accessible TF motifs 
(DAMs) using chromVAR scores for the following comparisons: primary 
cancer cells from each cancer cohort versus pooled primary cancer cells 
from all other tumours (Supplementary Table 4d), primary cancer cells 
versus respective CNC (Supplementary Table 4e) and metastatic cancer 
cells versus primary cancer cells (Fig. 4a and Supplementary Table 6d). 
For all DAM analysis, we used scores calculated on merged pan-cancer 
objects containing cancer and selected normal cells. To perform DAM 
analysis, we used a two-sided Wilcoxon rank-sum test between the corre-
sponding groups, subsequently applying FDR correction to the resulting 
P values. For metastasis-specific TFs, we also used results of differential 
regulons obtained from SCENIC (based on sc/snRNA-seq data). Differen-
tial regulons were calculated using a two-sided Wilcoxon rank-sum test 
between the same groups of cells, and then applying FDR correction. 
We selected only those TFs that were significant (FDR < 0.05) in both the 
DAM and the regulon analysis, and also required them to have a score 
change in the same direction between the same cell groups. Finally, 
we calculated the expression score as the absolute value of expression 
log2[FC] between the metastatic and primary cancer cells using per 
sample average values, also requiring the same fold change direction 
as the direction of the score difference for the same TF (Fig. 4a).

Annotating genomic regions with cis-regulatory elements. Open 
chromatin regions were annotated with cis-regulatory elements from 
the geneHancer Regulatory Elements Elite list for hg3887 from the  
Genome USCS browser (last updated version, 2 September 2018). 
Genomic regions of geneHancer enhancers and promoter/enhancers 
were overlapped with a minimum overlap of 400 bp using the findO-
verlaps function from the IRanges R package. We also downloaded 
scEnhancer enhancers from all tissues and overlapped them with open 
chromatin regions the same way. Moreover, we downloaded inter-
actions between GeneHancer regulatory elements and target genes 
from geneHancer Interactions Double Elite list (last updated version,  
15 January 2019). Region-to-gene links were then annotated by presence 
in the geneHancer Interactions Double Elite list.

Annotating genomic regions with public ChIP–seq datasets. First, 
we identified each JASPAR2020 TF motif in every open chromatin  
region using the function matchMotifs from the motifmatchr (v.1.12.0) 
R-package. We next downloaded ENCODE ChIP–seq hg38 bed files for 
all available TFs (download date, 28 January 2022). We then overlapped 
TF-binding ChIP–seq regions with the corresponding TF motif coor-
dinates in our chromatin regions set using the findOverlaps function 
from the IRanges R package with minimum overlap equal to the length 
of the motif. If a given TF motif fully overlapped with a ChIP–seq-based 
binding region of the same TF, then we labelled this motif as being  
supported by ChIP–seq data.

Confirming tissue- and cancer-cell-specific TFs using published 
chromatin accessibility datasets. We collected the sc/snATAC-seq 
or bulk ATAC-seq studies with relevant differentially expressed TF 
analysis from published literature, including BRCA88, MM89, ccRCC90, 
PDAC91, pan-organ chromatin accessibility8 and the bulk ATAC-seq 
study in human cancers6. For BRCA, epithelial cells were compared 
to endothelial cells, fibroblast or immune cells, and the upregulated 
TFs were identified. In MM, fold change expression of TFs between 
myeloma and plasma cells was calculated to identify upregulated TFs 



in myeloma cells. For ccRCC and PDAC, the fold change expression of 
cancer-specific TFs between cancer cells and normal cells was calcu-
lated to identify upregulated TFs in either cancer cells (cancer-specific 
TF) or normal cells (tissue-specific TF).

Moreover, the sc/snATAC-seq dataset from the pan-organ chromatin 
accessibility study was used to confirm cancer and tissue-specific TFs. 
The relevant cell types were annotated with their relevant disease code 
as the CNCs of the cancer. For example, mammary luminal epithelial 
cells to non-basal BRCA, mammary basal epithelial to basal BRCA, 
keratinocyte to HNSCC, colon epithelial cells to CRC, enterocyte to 
CRC, colon goblet to CRC, SI goblet to CRC, melanocyte to SKCM, acinar 
to PDAC, ductal cell to PDAC, astrocyte to GBM, oligodendrocyte to 
GBM, oligo precursor to GBM and plasma cells to MM. The tissue and 
cancer cell-specific TFs highly expressed in the corresponding cell 
populations were then identified.

Finally, the bulk ATAC-seq dataset from human cancers6 was used to 
determine whether the tissue and cancer-specific TFs are the markers 
for the corresponding chromatin-accessibility-driven clusters. The 
clusters were annotated as follows: Cluster 1 to ccRCC, cluster 2 to 
CRC, cluster 3 to BRCA, cluster 5 to GBM, cluster 7 to SKCM, cluster 8 
to CESC, cluster 14 to BRCA, and cluster 15 to UCEC.

CUT&RUN sequencing read alignments, quality control and peak 
calling. To process the CUT&RUN reads, we first performed quality 
control using FastQC to assess read quality (http://www.bioinformat-
ics.babraham.ac.uk/projects/fastqc). We next used Trimmomatic92. 
The resulting trimmed reads were subsequently mapped to the human 
reference genome (GRCh38.d1.vd1.fa.tar.gz) using Bowtie293 with the 
dovetail setting. Finally, to eliminate any duplicated reads, the aligned 
reads were processed for duplicate removal using Picard (http://broa-
dinstitute.github.io/picard/). To call peaks, we used MACS2 using an 
IgG BAM file as a control. Then, for resulting peaks, we applied the same 
filtering steps as for the peak calling on snATAC-seq data.

Direct binding profiling of TFs to target genes using ENCODE  
ChIP–seq datasets. To comprehensively analyse the TF-specific 
ChIP–seq datasets from ENCODE, we used SCENIC to obtain the list 
of target genes for 53 tissue- and cancer-specific TFs with ChIP–seq 
datasets available. Subsequently, we extracted and aggregated the 
ChIP–seq peaks from multiple biosamples (Supplementary Table 5b) 
using the readPeakFile function from ChIPseeker and determined 
overlaps with the promoter regions of the target genes (5 kb upstream 
and downstream of TSSs) using the makeBioRegionFromGranges and  
getTagMatrix functions from ChIPseeker (Supplementary Table 5c). To 
annotate all of the peaks and regions, we used TxDb.Hsapiens.UCSC.
hg38.knownGene in Ensembl style. We also overlapped the snATAC-seq 
peaks and CUT&RUN peaks with target genes using the aforementioned 
methods. Finally, we visualized the average ChIP–seq, snATAC-seq 
and CUT&RUN signals around the TSSs of the target genes using the 
plotAvgProf function from ChIPseeker, allowing for a comprehensive 
understanding of the regulatory landscape of the TFs across various 
tissues, cell lines and cancer types.

Bulk ATAC-seq and snATAC-seq comparison. We compared the peak 
coordinates from bulk ATAC-seq6 with the peak coordinates from our 
snATAC-seq data in eight cancer types, namely UCEC, ccRCC, GBM, 
BRCA, CESC/AD, CRC, SKCM and HNSCC. For each cancer cohort, com-
mon open chromatin regions were defined as the ones that had overlaps 
of at least 50 bp (overlap > 10%) with any open chromatin regions from 
the bulk ATAC-seq study, and all other regions (no overlap or overlap 
< 10%) were identified as snATAC-seq-specific open chromatin regions.

Identifying snATAC-seq cell-type-specific peaks. To generate the 
bar plot showing the snATAC-seq specific peaks that were found in 
multiple cell types, we first used the AccessiblePeaks function from the 

Signac package94 to identify accessible regions in each cell type of the 
eight cancer types. We next categorized the identified peaks into two 
groups on the basis of whether they appeared in only one cell type, such 
as tumour cells, or whether they appeared in more than one cell type. 
We then used the BEDtools66 intersect function to compare the peak  
coordinates of snATAC-seq-specific peaks with these two cell type 
groups of peaks. This analysis enabled us to identify the snATAC- 
seq-specific peaks that were accessible in multiple cell types, which we 
then used to generate the bar plot.

Overlapping chromatin accessibility peaks and ChIP–seq peaks. 
To overlap snATAC-seq and ChIP–seq peaks, we used the BEDtools66 
intersect function to compare the peak coordinates obtained from 
ChIP–seq95 with our snATAC-seq-specific, bulk-ATAC-seq-specific and 
bulk/snATAC-seq overlapping peaks. This analysis was conducted 
separately for each of the eight cancer types to determine the extent 
to which the identified snATAC-seq peaks represented true signals 
rather than noise.

Overlapping snATAC-seq-specific peaks and fetal chromatin acces-
sibility peaks. To investigate whether our snATAC-seq-specific peaks 
were recurrently observed in other datasets, we compared our peak 
sets with the cell atlas of fetal chromatin accessibility9. We downloaded 
the master list of sites (GSE149683_File_S1.Master_list_of_sites.txt) and 
converted the genomic coordinates from hg19 to hg38 using the UCSC 
liftOver tool. We then converted the bed files to GRanges objects and 
used the findOverlaps function of GRanges to determine the over-
laps between our snATAC-seq-specific peaks and the fetal chromatin  
accessibility peaks.

Linking genomic regions to genes. We applied the LinkPeaks func-
tion from the Signac R package (v.1.8.0)94,96 on tumour cells with 
snMultiome-seq data (snRNA-seq and snATAC-seq measured in the 
same cell). Only open chromatin regions located within 500 kb of a 
gene TSS were considered. Links were considered to be significant with 
a correlation value r > 0.05 and P < 0.05. Furthermore, we followed an 
established procedure6 to account for diffuse correlations. Diffuse 
correlations occur in genomic regions in which chromatin accessibil-
ity is generally high, whereby the gene expression is increased. It does 
not necessarily relate to an increased accessibility of cis-regulatory 
elements. To account for diffuse correlations, we divided each chro-
mosome into 100 kb windows, quantified accessibility of these regions 
and correlated this accessibility with expression of genes of which the 
TSS is within 500 kb. As diffuse 100 kb windows are significantly larger 
than peaks (501 bp), they have accessibility coverage in more cells and, 
consequently, receive higher correlation values on average. To mitigate 
these differences, we z-scored correlation values for both open chro-
matin regions and 100 kb windows. We then compared z-scored cor-
relation values and retained only those predicted region-to-gene links 
that had higher z-scored correlation values than the 100 kb window 
that they belong to. Moreover, we reasoned that copy-number changes 
are strong drivers of gene expression patterns, so it is important to 
account for them. We used the results of inferCNV on RNA-assay for 
snMultiome-seq samples and on ATAC-assay for regular snATAC-seq 
samples to quantify the number of cells with a gain or amplification 
of each gene and excluded those genes that are frequently amplified 
(in >25% of cancer cells and >2,000 cells). For example, on the basis of 
these thresholds, the ELF3 gene was excluded in PDAC, but was retained 
in BRCA, CRC, HNSCC, OV and UCEC.

Links associated with cancer transitions. To identify links implicated 
in cancer transitions from normal cells to primary tumour (Fig. 2d and 
Extended Data Fig. 5g), we required the following: (1) the ACR in the link 
to be significantly more accessible (log2[FC] > 0.5, Wilcoxon rank-sum 
test FDR < 0.05) and (2) the gene to be significantly upregulated 
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(log2[FC] > 0.25, Wilcoxon rank-sum test FDR < 0.05) in primary can-
cer cells versus their CNCs.

Enrichment of links in TF target genes. We calculated the enrichment 
of genes linked to ACR containing a TF motif based on the idea that, if 
a group of genes is indeed regulated by a TF, then we should be able to 
identify TF-motif-containing genomic regions of which the accessi-
bilities are correlated with expression of these genes. The working 
model is based on the biology of TF activity. Namely, a TF binds to its 
binding site near a target gene, indicating the accessibility of this region, 
and subsequently stimulates the expression of this gene. This relation-
ship between accessibility and gene expression should be detectable 
by correlation in a similar manner as we showed above. To test wheth-
er TF target genes identified by SCENIC analysis are significantly en-
riched for genes linked to the accessibility of this TF motif, we first 
sought to characterize the random background rate of gene–ACR link-
age occurrences for each regulon by performing 500 samplings of N 
random-picked genes, where N is the number of target genes in the 
regulon, and then identifying the number K of genes linked to ACRs 
containing the TF motif. Random genes were limited to genes expressed 
in each cancer type and were therefore different for each cancer type. 
The null hypothesis is taken as the expectation for the number of genes 

linked to a TF motif, namely the average E K[ ] ≈
∑ K

500
ii=1

500

. Presuming that 
gene–ACR counts are normally distributed, we then used a Gaussian 
curve of μ = mean(K) and σ = s.d.(K) for testing each respective regulon, 
computing z = (M − μ)/σ, where M is the observed number of target 
genes linked to TF motifs and converting this score to a one-sided P 
value. For visualization purposes, we computed fold change M

Kmean( )
. 

Motifs in ACRs were identified using the CreateMotifMatrix function 
in the motifmatchr R package.

Links associated with genetic drivers. To find ACR-to-gene links in 
cancer driver genes we filtered links by oncogenes from a previous 
study49. For visualization of accessibility and gene expression of EGFR 
in BRCA basal, CESC and HNSCC cancers, we included only samples 
with EGFR copy-number neutral calls from WES using the GATK pipe-
line (see above). All of the samples except for one HNSCC sample also 
had neutral inferred copy-number calls for EGFR based on inferCNV 
results from snRNA-seq data. This HNSCC sample with case ID P5514 
showed no significant EGFR expression difference with WES-based 
EGFR-copy-number neutral cases (log2[FC] = 0.08, Wilcoxon rank-sum 
test P value = 0.09). However, all WES-based EGFR-amplified cases 
showed significant upregulation of EGFR expression compared with 
EGFR-copy-number neutral cases (P5504, log2[FC] = 0.13, P = 3.7 × 10−6; 
P5216, log2[FC] = 2.2, P = 1.7 × 10−39; P5379, log2[FC] = 1.3, P = 4.6 × 10−81; 
P5576, log2[FC] = 3.9, P = 9.3 × 10−61). As the GATK pipeline did not call 
EGFR copy-number gain in P5514 and we did not observe upregulation 
of EGFR expression in this case, we included it in Fig. 5c.

HPV status assignment. To detect HPV reads in the sample, we fol-
lowed a series of steps. First, we constructed a genome database for 
known HPV genotypes. We next extracted the unmapped reads from 
the snRNA-seq BAM files that did not align to the human genome. We 
then used BWA55 to align these unmapped reads against the constructed 
virus genome database. Finally, we identified the HPV reads from the 
alignment results. Detailed source code for this process can be found 
at the GitHub repository (https://github.com/ding-lab/VirusScan/
tree/simplified).

Survival analysis. RNA-seq expression data for TCGA samples were 
obtained through the cBioPortal (https://www.cbioportal.org/), 
along with clinical information from the TCGA Pan-Cancer Clinical 
Data Resource (TCGA-CDR)97. The regulons generated in this study 
(see the ‘Gene regulatory network analysis using SCENIC’ section) 
were used to calculate regulon activity on the basis of bulk RNA-seq 

expression data for samples from TCGA cohorts (HNSCC, GBM, READ, 
COAD and PAAD) using the AUCell (v.1.19.1) R package (Supplementary  
Table 9a).

Samples were grouped on the basis of regulon activity scores: those 
with scores of higher than the median as the ‘high group’ and those 
with scores ≤median as the ‘low group’. The survival probability of 
progression-free survival/overall survival and Kaplan–Meier curves were 
then calculated for both groups using the survival (v.3.2.7) and survminer 
(v.0.4.9) R packages. We also performed Cox proportional hazard models 
to discern the regulons that most significantly and independently influ-
enced patient survival. Significant regulons identified from Kaplan–Meier 
curves were added to the models to ascertain their distinct contribution 
to survival, after adjusting for age, sex and HPV status.

Identifying regulons significantly associated with HPV infection. 
To assess differences in regulon activity between HPV+ and HPV−  
HNSCC samples, we used the Wilcoxon rank-sum test for compari-
sons to identify HPV-status-associated regulon changes. We further 
validated the HPV-status-associated regulons in the TCGA-HNSCC 
cohort using the calculated regulon scores (Supplementary Table 9a).

Making case-level objects of paired primary/metastatic samples 
for EMT analysis. In our cohort, we had nine patient cases with both 
primary and metastatic tumours in UCEC and CRC cancers. For the EMT 
analysis, we created case-level snATAC-seq objects, including cancer 
cells from a primary sample, cancer cells from a metastatic sample and 
normal epithelial cells from a primary sample (if available). These cells 
were renormalized and clustered similar to the approach described 
above (using 2:30 LSI components for the runUMAP and FindNeighbors 
functions). Clustering resolution was adjusted per case to prevent 
overclustering. For UCEC cases CPT1541DU and CPT704DU, the reso-
lution was 0.2, for CPT2373DU and CPT4096DU it was set to 0.1, and 
for CPT4427DU, it was 0.3. For CRC cases CM1563C and CM663C, the 
resolution was 0.1 and, for CM268C and CM618C, it was 0.2. Few cases 
showed small clusters of cells with increased accessibility of immune 
markers, suggesting that they are probably doublets with immune 
cells; they were therefore marked as other and were not included in 
the downstream analysis.

Trajectory inference for EMT analysis of paired primary/metastat-
ic samples. For the trajectory analysis of the nine paired primary/
metastatic snATAC-seq samples, we used the slingshot R-package 
(v.2.5.1), which implements a top performing trajectory inference 
method in a large trajectory inference benchmark98,99. Slingshot  
requires two inputs: dimensionality reduced data and a clustering of 
cells. For the clustering of cells, we used the cell type annotations (nor-
mal, primary tumour and metastatic tumour) in all cases as input, 
specifying the normal cluster as the starting cluster or primary tumour 
if normal cells were not available in the sample. For the dimensionality 
reduction, we used a supervised method known as between cluster 
analysis (BCA), which uses cell type information in addition to the  
underlying data to reduce the data in a way that is more amenable to 
trajectory inference by better preserving the relationships between 
cell types. Concretely let X R∈ n x p denote an snATAC-seq measure ment 
where n is the number of cells and p is the number of peaks  
and a clustering of the cells C C C C= { , , . . . , }K1 2  into K cell types. Let 

∑µ X R= ∈k C i C i
xp1

∈
1

k k
 denote the centroid of cluster Ck and define  

the between-cluster variance VB as ∣ ∣∑V tr C µ µ tr S X C= ( ) = ( ( , ))B k
K

k k
T

k B=1
, where S X C R( , ) ∈B

p x p  is known as the between cluster scatter. The 
objective of BCA is to find a set of r = K − 1 orthogonal axes held in the 
columns of W R∈ p x r that best preserve the between cluster variance; 
concretely, BCA solves the following optimization problem 

tr W S X C Wmax ( ( , ) )
W W I

T
B

=T
r

. The solution (optimal W*) is given by the larg-

est r eigenvectors of SB(X,C), with the corresponding BCA embedding 
corresponding to YBCA = XW*. For every case, we gave Slingshot the first 
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two components of BCA as input (we found in practice that this per-
formed the best qualitatively as opposed to using all K − 1 components). 
As the between-cluster variance is a supervised statistic  
(requires knowledge of a cell type clustering), it preserves relationships 
between cell types, which is desirable for trajectory inference. Note 
that BCA works only for datasets with three or more clusters when 
wanting to produce a visualization or input to a trajectory inference 
method.

To control for the confounding effects of total read count, we gave 
as input to BCA the 2:50 LSI components and either the cell type anno-
tation (normal, primary or metastatic cancer cells) or the case-level 
clusters (Extended Data Fig. 8b). We gave BCA the cell type annotations 
as the clusters when there were normal cells present in the sample 
(K = 3); otherwise, we used the case-level clusters. Moreover, both case 
CM1563C and case CPT2373DU had only two cell type clusters (pri-
mary and metastasis) and two or fewer case-level clusters; we therefore 
gave Slingshot as input the 2:50 LSI components for CM1563C and 
CPT2373DU, as BCA returns only a one-dimensional embedding for 
both of these samples.

Slingshot outputs a pseudotime (a real number modelling the under-
lying biological progression) for each cell. For each case we correlated, 
using Pearson’s coefficient, the pseudotimes with each of the 663 TF 
motif scores obtained from our previous analysis and adjusted the 
corresponding P values for each correlation using the Benjamini– 
Hochberg method to control for multiple tests. We used an FDR thresh-
old cut-off of 0.05 (Supplementary Table 7).

Identifying enriched metastatic pathways from ACRs. For the nine 
paired primary–metastatic samples (4 CRC and 5 UCEC), we identified 
significant pathways that are characterized by DACRs across primary 
and metastatic cancer cells. We identified two different sets of primary–
metastatic DACRs: regions that were significantly associated with TF 
scores and regions that were significantly associated with pseudotime 
identified in the trajectory analysis filtered to contain only primary 
and metastatic cells. The rationale here is that both the pseudotime 
and the TF motif score are relevant to metastatic progression of pri-
mary tumour cells. Thus, regions that are significantly associated with 
either feature are likely to have a role in the metastasis of tumour cells. 
We used lasso regression as implemented in the R glmnet package100 
to identify which peaks were significantly associated with either TF 
motif score or pseudotime. That is, we used either the pseudotime 
or the TF motif score as the response variable and assigned all of the 
chromatin regions as covariates. We chose lasso for two reasons, as 
opposed to linear regression or ridge regression. First, there are far 
more peaks than cells; therefore, linear regression cannot be applied. 
Second, we wanted a sparse set of peaks that are more likely to be part 
of the metastatic process. We considered peaks to be significantly  
associated if they have a non-zero lasso regression coefficient. We chose 
the value of the lasso regularization parameter lambda by performing 
tenfold cross-validation using cv.glment, subsequently choosing the 
lambda that minimizes the cross-validation error in all of the samples 
except in CPT2373DU, for which we saw empirically better results by 
choosing the minimum lambda across the default glment lambda  
sequence.

The genes related to the pseudotime DACRs were collected for 
gene-set over-representation analysis (Extended Data Fig. 9h) using 
the database of hallmark MSigDB pathways71. The significant pathways 
were obtained by running a hypergeometric test using clusterProfiler 
listing the pathways with a varied range of FDRs. We performed an 
identical analysis for the DACRs associated with the activities of TFs 
involved in metastasis (Supplementary Fig. 5).

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data are part of Human Tumour Atlas Network (HTAN) 
dbGaP Study accession phs002371.v3.p1 and Clinical Proteomic 
Tumour Analysis Consortium (CPTAC) dbGaP Study accession 
phs001287.v17.p6. Data can be accessed through the HTAN DCC Portal 
(https://data.humantumoratlas.org/) under the HTAN WUSTL Atlas. 
Sequencing data for CPTAC ccRCC and GBM samples are available 
through the NCI Genomic Data Commons (GDC) under the CPTAC3 
project. Matrices for CPTAC GBM and ccRCC samples and CUT&RUN 
data are available from the Gene Expression Omnibus (GEO) under 
accession numbers GSE240822 and GSE240699, respectively. GRCh38 
references used for sc/snRNA-seq (refdata-gex-GRCh38-2020-A) and 
snATAC-seq and snMultiome-seq (refdata-cellranger-arc-GRCh38-
2020-A-2.0.0) analyses are freely available from the 10x Genomics 
website (https://support.10xgenomics.com). The reference GRCh38 
genome (https://api.gdc.cancer.gov/data/254f697d-310d-4d7d-a27b-
27fbf767a834) used for WES and CUT&RUN read alignment is available 
from GDC (https://gdc.cancer.gov/about-data/gdc-data-processing/
gdc-reference-files).

Code availability
Many bioinformatics tools were used in the course of this work. All 
tools written and/or published by the authors are freely available at our 
public GitHub repository (https://github.com/ding-lab/), including the 
somaticwrapper variant calling pipeline (https://github.com/ding-lab/
somaticwrapper), the code for the mutation mapping from bulk to 
single cells (https://github.com/ding-lab/10Xmapping), the pipeline for 
HPV status assignment (https://github.com/ding-lab/VirusScan/tree/
simplified) and COCOON (https://github.com/ding-lab/COCOONS). 
Other tools used here are available from their associated authors. The 
scripts and additional information for reproducing analysis and fig-
ures are available at our GitHub page (https://github.com/ding-lab/
PanCan_snATAC_publication).
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Extended Data Fig. 1 | snATAC-seq and sc/snRNA-seq data overview.  
a, Overview of the cohort and sample availability, indicating 11 different cancer 
types, 3 sample types (NAT - normal adjacent tissue, Primary - primary tumour, 
Metastasis - metastatic tumour), and 3 data types collected for each sample. 
The bar plot annotation on top of the heatmap provides information about the 

number of peaks detected in each sample. b, UMAPs of 11 cancer types based 
on snATAC-seq chromatin accessibility. Each cell is colour-coded by cell type to 
visualize the differences in chromatin accessibility. c, UMAPs of 11 cancer types 
based on sc/snRNA-seq data. Each cell is colour-coded by cell type to visualize 
the differences in gene expression.
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Extended Data Fig. 2 | Integrated data overview and DACRs between cancer 
cells. a-c, UMAPs of pan-cancer objects: (a) 225 snATAC-seq samples, all cell 
types; (b) 225 snATAC-seq samples, tumour and selected normal cell types;  
(c) 206 sc/snRNA-seq samples, tumour and selected normal cell types. Cells  
are coloured by cell type. d-f, UMAPs of pan-cancer objects: (d) 225 snATAC-seq 
samples, all cell types; (e) 225 snATAC-seq samples, tumour and selected 
normal cell types; (f) 206 sc/snRNA-seq samples, tumour and selected normal 

cell types. Cells are coloured by cancer type. g, Tissue- and cancer cell-specific 
differentially accessible chromatin regions (DACRs) identified across 11 cancer 
types. Columns correspond to DACRs and rows to tumour samples of every 
cancer type. For each sample peak accessibility was calculated as average 
across its cancer cells. Labels on the abscissa indicate DACRs that are in 
promoters of the top 5 tissue- and cancer cell-specific DEGs by fold change. 
DACRs that are shared between CESC/HNSCC and UCEC/OV are highlighted.



Extended Data Fig. 3 | Similarity patterns between squamous cancers, and 
OV and UCEC. a, tSNE-plot based on top tissue- and cancer cell-specific DACRs 
from Extended Data Fig. 2g showing tumour samples clustering. CESC/HNSCC 
and UCEC/OV clusters of samples are highlighted with shading. b, Dot plots 
showing squamous and adenocarcinoma markers snRNA-seq expression in 

CESC/AD and PDAC samples. Markers were obtained from101. c, snATAC-seq 
based coverage plots showing examples of pan-cancer ACRs: KRT6A (left) is 
shared between CESC and HNSCC, and PAX8 (right) is shared among UCEC, OV, 
CEAD, and ccRCC cancer types.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Characterization of cancer cell-specific DACRs.  
a, Violin plots showing distributions of Pearson correlation coefficients 
between cancer cells from each tumour and normal cell types of tissue of origin 
using snRNA-seq data. For each cohort, cell types are ordered by increasing 
median correlation coefficient across samples. b, Bubble plot showing top 
down-regulated cancer cell-associated DACRs, including shared and cancer-
specific DACRs, identified by comparing cancer cells vs. CNC. Bubble size 
shows percentage of cancer cells with accessible DACR and colour conveys log2 
fold change (FC). X-axis shows the nearest gene of each DACRs. Genes are 
grouped by those shared between cancers and those specific to cancer types. 
Cancer-specific DACRs were selected based on specificity and by FC in each 
cancer type (columns), or if they were shared by maximal number of cancers 
(shared). Negative log2(FC) is shown if ACR was accessible in >0.05 of cancer 
cells. Genes’ DACRs that overlap promoters and enhancers from the EpiMap 
database are highlighted in bold. c, Bar chart shows counts of primary cancer 
cells vs. CNCs DACRs broken down by EpiMap annotation. 53% of DACRs are 
annotated as enhancer regions and 37% as promoter regions, the rest are not 
annotated in EpiMap. d, Bar plot showing the proportion of primary cancer 
cells vs. CNCs DACRs (FDR < 0.05) for which the nearest gene definitively 

changes expression in the same direction (includes significant RNA hits at 
FDR < 0.05 and suggestive RNA hits at FDR < 0.3, absolute log2FC > 0.05),  
or gene indicatively changes expression in the same direction (absolute 
log2FC < 0.05). DACRs and nearby genes that do not match in the direction of 
accessibility/expression are marked as ‘not matching’. e, Scatter plots showing 
correlation of log2FC of DACRs and log2FC of DEGs of nearby genes. Spearman’s  
rho values and two-sided p-values are shown. Dot colour indicates -log10(FDR). 
The grey band corresponds to the 95% confidence level interval for predictions 
from the linear model. f, Bubble plot showing significant and suggestive 
(FDR ≤ 20%) hallmark pathway enrichments from upregulated cancer cell-specific  
DACRs in panel Fig. 1d. Bubble size and colour convey gene count and log10 of 
FDR, respectively. The total number of DACRs per cancer type in the analysis is 
capped at 1,000 by log2 fold change to ensure balanced comparison (top bar 
plot). Total number of DACRs annotated in each hallmark pathway are shown on 
the bar plot on the right. g, Coverage plots showing chromatin accessibility in 
genomic regions containing genes ABCC1 and VEGFA for neoplastic cells and 
CNC in each cancer type. DACRs are highlighted and gene expression levels 
show concordance with chromatin accessibility (right).
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Cancer cell-specific enhancers. a, Bar chart showing 
proportions of ACR-to-gene links found in GeneHancer Interactions database 
(red and blue indicate found and not found, respectively). ACR-to-gene links 
were pre-filtered by ACRs overlapping with an element from GeneHancer 
regulatory elements database. b, Coverage plot of the ASAP2 region in PDAC 
primary cancer cells and ductal-like-2 normal cells. Genomic regions highlighted  
in yellow correspond to EpiMap enhancers. Zoom-in views on enhancer and 
promoter regions on the right side provide finer detail. Violin plot of ASAP2 
RNA expression appears at far right (log2(FC) = 0.71, Wilcoxon rank-sum test 
two-sided p-value = 1.57−87). c, Kaplan-Meier plot of disease-free survival of 
TCGA PDAC patients stratified by ASAP2 high and low expression (high ASAP2, 
n = 30; low ASAP2, n = 38, Log Rank Test p-value < 0.001). High ASAP2 group was 
defined as the top 50% quantile of RNA expression and low ASAP2 as the bottom 
50%. p-value was calculated using the log-rank test. d, Coverage plot showing 
ATAC-seq accessibility of PPARG region and enhancers linked to PPARG 
expression. Both linked enhancers are DACRs between primary PDAC cancer 
cells and pancreatic ductal-like 2 cells. Violin plot on the right side indicates 
PPARG RNA expression in the same cells. e, Scatter plots showing CRISPR 
PPARG KO effect (Y-axis) in pancreatic cancer cell lines vs PPARG expression 
(X-axis). Data was obtained from DepMap portal. Pearson’s correlation 
coefficient and its p-value are shown. f, Coverage plot showing snATAC-seq 

accessibility of FLNB region and enhancers linked FLNB expression. All linked 
enhancers are DACRs between primary PDAC cancer cells and pancreatic ductal- 
like2 cells. Violin plot on the right side indicates FLNB RNA expression in the 
same cells. g, Heatmap of ACR-to-gene links connecting regions with increased 
accessibility in BRCA basal cancer cells with genes with increased expression  
in BRCA basal cancer cells. Heatmap shows average normalized and scaled 
snATAC-seq and snRNA-seq values aggregated by sample for cancer cells and 
by cell type for normal breast cells. snATAC-based heatmap is clustered using 
Ward’s minimum variance method (Ward.D2 from R) and Euclidean distance, 
snRNA-based heatmap columns and rows follow respective snATAC-based 
heatmap column and row orders. Label key: dELS - distal cis-regulatory regions 
(CREs) with enhancer-like signatures, pELS - proximal CREs with enhancer-like 
signatures, PLS - CREs with promoter-like signatures. h, Coverage plot showing 
snATAC-seq accessibility of VEGFA region and enhancers linked to VEGFA 
expression. All linked enhancers are DACRs between primary BRCA basal 
cancer cells and luminal progenitor cells. Violin plot on the right side indicates 
VEGFA RNA-seq expression in the same cells. i, Coverage plot showing snATAC-
seq accessibility of EN1 region and enhancers linked EN1 expression. All linked 
enhancers are DACRs between primary BRCA basal cancer cells and luminal 
progenitor cells. Violin plot on the right side indicates EN1 RNA-seq expression 
in the same cells.
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Extended Data Fig. 6 | Tissue- and cancer cell-specific regulons. a, 
Schematic showing regulons identified using SCENIC across 11 cancer types 
(Methods). b, Box plots showing regulon activity scores and TF motif 
accessibility scores for KLF3, GLI2, and FOXL1 in primary PDAC cancer cells 
(n = 2,211 for regulon activity; n = 30,428 for TF motif) and normal pancreas 
ductal-like 2 cells (Ductal-like 2 n = 744 for regulon activity; n = 1,652 for TF 
motif). c, Box plots showing regulon activity scores and TF motif accessibility 
scores for FOSL1 in PDAC (n = 2,211) increase compared to those in squamous 
cancers (CESC n = 2,200; HNSCC n = 3,462) and normal squamous cells 
(n = 143). d, Box plots showing GATA6 regulon activity scores decreasing in CRC 
(n = 446), PDAC (n = 2,211), OV (n = 1,400), and UCEC (n = 800) cancer cells 

compared to respective CNCs (Distal stem cells n = 184; Ductal-like 2 n = 744; 
Secretory endometrial cells n = 202). In the b-d box plots for cancer cells are 
coloured by cancer types. Wilcoxon rank-sum test FDR adjusted two-sided 
p-values are shown (Supplementary Table S4c, e). Box plot center line 
corresponds to the median, the lower and upper hinges correspond to the first 
and third quartiles. The upper or lower whiskers extend from the hinge to the 
largest or the lowest value no further than 1.5*IQR from the hinge (where IQR is 
the inter-quartile range). e, Bubble plot showing pathway enrichment in target 
genes of tissue and cancer cell-specific regulons. Target genes were filtered out 
by tissue/cancer cell-specific DEGs in the respective cancer type 
(Supplementary Table 2b).



Extended Data Fig. 7 | Regulon target genes validation. a, Bar plot summarizing 
the proportion of target gene promoters (within upstream and downstream 5 kb 
of TSS) that overlap with TF-specific ChIP-seq peaks for 53 TFs identified in Fig. 3a. 
Each bar represents a different TF, with the height of the bar indicating the 
proportion of target gene promoters that overlap with ChIP-seq peaks. The 

proportion is expressed as a percentage on the y-axis. b, TSS plots showing the 
presence of aggregated ChIP-seq peaks (ENCODE) and snATAC-seq peaks of 
target genes. c, TSS plots showing the presence of ChIP-seq peaks (ENCODE)  
from the corresponding biosamples, snATAC-seq peaks, and CUT&RUN peaks  
for CTCF’s target genes in CAKI (left), MCF-7 (middle), and U251 (right) cell lines.
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Extended Data Fig. 8 | snATAC-seq based differences between primary and 
metastatic cancer cells. a, Heatmap showing top 200 up-regulated DACRs 
associated with the transition from primary to metastasis across four cancer 
types. Labels on the X-axis show the nearest genes to DACRs which also have 
significantly up-regulated gene expression in metastatic samples compared  
to primary tumour samples based on snRNA-seq data. For each sample (rows) 

peak accessibility was calculated as average across its cancer cells. b, Pie-charts 
showing contribution of primary cancer cells, metastatic cancer cells, and 
normal epithelial cells to each cluster of case-level objects (see Methods) from 
5 UCEC and 4 CRC cases. c, Pearson correlation coefficient heatmap computed 
based on TF motif scores averaged per cluster and per sample, showing that 
cancer cells from the same cluster tend to be similar by their TF score profiles.



Extended Data Fig. 9 | Pseudotime trajectories of UCEC and CRC cases,  
and significant pathways enriched in ACRs associated with pseudotime.  
a-g, Plots of trajectories found by Slingshot for 3 CRC (a-c) and 4 UCEC (d-g) cases 
coloured by cell type. Each case (except for CM1563C and CPT2373DU) is 
plotted using Between Cluster Analysis (BCA, a novel supervised dimensionality  
reduction method) and visualized on the first two between cluster components 
(BCCs). Cases CM1563C and CPT2373DU, which have only two cell types as well 

as two or less case clusters, were visualized with the second and third LSI 
components instead. Each trajectory starts from the normal cell type if 
available; otherwise, it starts from the primary tumour cell type. h, Bubble  
plot of significant pathways enriched in ACRs significantly associated with 
pseudotime (from normal to primary cancer cells, and then to metastatic 
cancer cells). The significant ACRs were found by regressing them against 
pseudotime using lasso regression.
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Extended Data Fig. 10 | Summary of somatic drivers, druggable targets, 
and prognostic significance. a, Summary heatmap showing the landscape of 
genetic drivers (i.e., somatic mutations, CNVs) and clinical annotation for the 
samples with bulk WES available in this cohort (n = 176). b, Dotplot showing 
DACRs between TP53 missense mutant samples and TP53 WT, or between TP53 
truncation mutants and TP53 WT in BRCA, using sample-level snATAC-seq ACRs 
accessibilities. For this analysis we used only ACRs that were supported by TP53 
ChIP-seq obtained from ENCODE36 and that also contained a TP53 binding motif.  
Dot size corresponds to two-sided Wilcoxon rank-sum test FDR adjusted 
p-values. c, The Kaplan-Meier plots and analysis of progression-free survival in 
TCGA-GBM cohort stratified by BACH2 regulon activity (left) and in TCGA-CRC 
stratified by E2F8 regulon activity (right). Error bands represent 95% confidence  
intervals; two-sided p-values by the log-rank (Mantel–Cox) test are indicated; n 
is specified for each patient subgroup; high and low regulon activity groups are 

defined based on values above and below the median, respectively. d, A  
forest plot showing the hazard ratio (X-axis, the center of error bars) and 95% 
confidence intervals (error bars) associated with regulons and HPV status 
(Y-axis) identified by multiple Cox proportional-hazards models with overall 
survival adjusted for age and sex in TCGA-HNSCC cohort. Cox proportional 
hazards model two-sided p-values are shown; high and low regulon activity 
groups are defined based on values above and below the median, respectively. 
e, Bubble plot showing druggable targets as annotated in CIViC database102 
found by DACR analysis between primary cancer cells and corresponding 
CNCs. Each dot is one DACR. X-axis shows the nearest gene. f, Bubble plot 
showing druggable targets as annotated in CIViC database102 found by DEG 
analysis between primary cancer cells and corresponding CNCs. Each dot is 
one DEG.
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