3,281 research outputs found

    Global Motion Configuration Can Override Local Motion Contrast

    Full text link
    How is the perceived direction of motion of a target affected by the motion of multiple surrounding regions? Observers viewed displays consisting of three nested regions, a circular target region surrounded by two concentric annuli, each containing coherently moving dots. The observers' task was to estimate the direction of motion of the dots in the central region. By itself, motion in either annulus can alter this estimate, producing a contrast effect whereby the perceived direction of the centre is biased away from the direction of motion of the annulus. In combination, the outer annulus dominated the inner in its effect on the target's motion. This result suggests that local operators, such as antagonistic centre-surround mechanisms for motion direction, are in themselves insufficient to explain relative motion effects.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N00014-94-J-0597); National Science Foundation (IRI- 90-00530); Air Force Office of Scientific Research (F49620-92-J-0334

    The Impact of Affinity on World Economic Integration: The Case of Japanese Foreign Direct Investment

    Get PDF
    This paper finds that a country’s affinity with a foreign country has a positive effect on foreign direct investment flows from it to that country, by analyzing Japanese foreign direct investment outflows during the period of 1995 to 2009. A rise in affinity between countries is thought to enhance their mutual trust and as a result lower the transaction costs of economic activities between them, thereby helping to promote bilateral foreign direct investment flows. These findings imply that a rise in affinity among countries is likely to facilitate international economic integration.JEL Classification Codes: F2Embargo Period 24 monthshttp://www.grips.ac.jp/list/jp/facultyinfo/chey_hyoung-kyu

    Adaptive Tesselation CMAC

    Full text link
    An ndaptive tessellation variant of the CMAC architecture is introduced. Adaptive tessellation is an error-based scheme for distributing input representations. Simulations show that the new network outperforms the original CMAC at a vnriety of learning tasks, including learning the inverse kinematics of a two-link arm.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100); National Science Foundation (IRI-90-00530); Boston University Presidential Graduate Fellowshi

    Neural Dynamics of Motion Grouping: From Aperture Ambiguity to Object Speed and Direction

    Full text link
    A neural network model of visual motion perception and speed discrimination is developed to simulate data concerning the conditions under which components of moving stimuli cohere or not into a global direction of motion, as in barberpole and plaid patterns (both Type 1 and Type 2). The model also simulates how the perceived speed of lines moving in a prescribed direction depends upon their orientation, length, duration, and contrast. Motion direction and speed both emerge as part of an interactive motion grouping or segmentation process. The model proposes a solution to the global aperture problem by showing how information from feature tracking points, namely locations from which unambiguous motion directions can be computed, can propagate to ambiguous motion direction points, and capture the motion signals there. The model does this without computing intersections of constraints or parallel Fourier and non-Fourier pathways. Instead, the model uses orientationally-unselective cell responses to activate directionally-tuned transient cells. These transient cells, in turn, activate spatially short-range filters and competitive mechanisms over multiple spatial scales to generate speed-tuned and directionally-tuned cells. Spatially long-range filters and top-down feedback from grouping cells are then used to track motion of featural points and to select and propagate correct motion directions to ambiguous motion points. Top-down grouping can also prime the system to attend a particular motion direction. The model hereby links low-level automatic motion processing with attention-based motion processing. Homologs of model mechanisms have been used in models of other brain systems to simulate data about visual grouping, figure-ground separation, and speech perception. Earlier versions of the model have simulated data about short-range and long-range apparent motion, second-order motion, and the effects of parvocellular and magnocellular LGN lesions on motion perception.Office of Naval Research (N00014-920J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-91-J-0597); Air Force Office of Scientific Research (F4620-92-J-0225, F49620-92-J-0499); National Science Foundation (IRI-90-00530

    Neural Dynamics of Motion Processing and Speed Discrimination

    Full text link
    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-tuned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the Vl→7 MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N00014-95-1-0657, N00014-95-1-0409, N00014-94-1-0597, N00014-95-1-0409); Air Force Office of Scientific Research (F49620-92-J-0499); National Science Foundation (IRI-90-00530

    The role of antiphase boundaries during ion sputtering and solid phase epitaxy of Si(001)

    Full text link
    The Si(001) surface morphology during ion sputtering at elevated temperatures and solid phase epitaxy following ion sputtering at room temperature has been investigated using scanning tunneling microscopy. Two types of antiphase boundaries form on Si(001) surfaces during ion sputtering and solid phase epitaxy. One type of antiphase boundary, the AP2 antiphase boundary, contributes to the surface roughening. AP2 antiphase boundaries are stable up to 973K, and ion sputtering and solid phase epitaxy performed at 973K result in atomically flat Si(001) surfaces.Comment: 16 pages, 4 figures, to be published in Surface Scienc

    Rainfall but not selective logging affect changes in abundance of tropical forest butterfly in Sabah, Borneo

    Get PDF
    We investigated the effects of rainfall on the distribution and abundance of the satyrine butterfly Ragadia makuta in selectively logged and unlogged forest on Borneo. In 1997-98, there was a severe El Nino-Southern Oscillation (ENSO) drought, and annual surveys over a 4-y period showed that abundance of R. makuta was greatly reduced during the drought, but that populations quickly recovered after it. Monthly surveys over a 12-mo period of typical rainfall showed that high rainfall in the month preceding surveys significantly reduced butterfly abundance. Butterfly abundance and distribution did not differ between selectively logged and unlogged areas in either monthly or annual surveys and there was no difference between selectively logged and unlogged areas in the pattern of post-drought recovery. These results indicate that the abundance of R. makuta was significantly reduced both after high rainfall and during severe drought, but that these impacts were short-lived and were not affected by habitat disturbance. ENSO droughts on Borneo naturally often lead to widespread forest fires and thus impacts of ENSO events for butterflies are more likely to be due to indirect effects of habitat loss, rather than direct effects of drought on butterfly population dynamics

    A Neural Model of Biased Oscillations in Aplysia Head-Waving Behavior

    Full text link
    A long-term bias in the exploratory head-waving behavior of Aplysia can be induced using bright lights as an aversive stimulus: coupling onset of the lights with head movements to one side results in a bias away from that side (Cook & Carew, 1986). This bias has been interpreted as a form of operant conditioning, and has previously been simulated with a neural network model based on associative synaptic facilitation (Raymond, Baxter, Buonomano, & Byrne, 1992). In this article we simulate the head-waving behavior using a recurrent gated dipole, a nonlinear dynamical neural model that has previously been used to explain various data including oscillatory behavior in biological pacemakers. Within the recurrent gated dipole, two channels operate antagonistically to generate oscillations, which drive the side-to-side head waving. The frequency of oscillations depends on transmitter mobilization dynamics, which exhibit both short- and long-term adaptation. We assume that light onset results in a nonspecific increase in arousal to both channels of the dipole. Repeated pairing of arousal increments with activation of one channel (the "reinforced" channel) of the dipole leads to a bias in transmitter dynamics, which causes the oscillation to last a shorter time on the reinforced channel than on the non-reinforced channel. Our model provides a parsimonious explanation of the observed behavior, and it avoids some of the unexpected results obtained with the Raymond et al. model. In addition, our model makes predictions concerning the rate of onset and extinction of the biases, and it suggests new lines of experimentation to test the nature of the head-waving behavior.Office of Naval Research (N00014-92-J-4015, N00014-91-J-4100, N0014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499); A.P. Sloan Foundation (BR-3122

    Coming into the Anthropocene

    Get PDF
    This essay reviews Professor Jonathan Cannon’s Environment in the Balance. Cannon’s book admirably analyzes the Supreme Court’s uptake of, or refusal of, the key commitments of the environmental-law revolution of the early 1970s. In some areas the Court has adapted old doctrines, such as Standing and Commerce, to accommodate ecological insights; in other areas, such as Property, it has used older doctrines to restrain the transformative effects of environmental law. After surveying Cannon’s argument, this review diagnoses the historical moment that has made the ideological division that Cannon surveys especially salient: a time of stalled legislation, political deadlock, and highly contested regulatory and judicial interpretation. This analysis, however, does not limit the interest of Cannon’s analysis to this political moment. Rather, Cannon’s integration of legal and cultural analysis has great promise for the Anthropocene, the dawning era when human decisions and values will be among the most important forces shaping the planet. In the future, it will be necessary to think of environmental law as both reflecting and producing ideas of the value and meaning of the natural world. Cannon’s analysis is an excellent starting point for an Anthropocene approach
    corecore