8 research outputs found
Type Ib/c supernovae in binary systems I. Evolution and properties of the progenitor stars
We investigate the evolution of Type Ib/c supernova (SN Ib/c) progenitors in
close binary systems, using new evolutionary models that include the effects of
rotation, with initial masses of 12 - 25 Msun for the primary components, and
of single helium stars with initial masses of 2.8 - 20 Msun. We find that,
despite the impact of tidal interaction on the rotation of primary stars, the
amount of angular momentum retained in the core at the presupernova stage in
different binary model sequences converge to a value similar to those found in
previous single star models. This amount is large enough to produce millisecond
pulsars, but too small to produce magnetars or long gamma-ray bursts. We employ
the most up-to-date estimate for the Wolf-Rayet mass loss rate, and its
implications for SN Ib/c progenitors are discussed in detail. In terms of
stellar structure, SN Ib/c progenitors in binary systems are predicted to have
a wide range of final masses even up to 7 Msun, with helium envelopes of 0.16 -
1.5 Msun. Our results indicate that, if the lack of helium lines in the spectra
of SNe Ic were due to small amounts of helium, the distribution of both initial
and final masses of SN Ic progenitors should be bimodal. Furthermore, we find
that a thin hydrogen layer (0.001 - 0.01 Msun) is expected to be present in
many SN Ib progenitors at the presupernova stage. We show that the presence of
hydrogen, together with a rather thick helium envelope, can lead to a
significant expansion of some SN Ib/c progenitors by the time of supernova
explosion. This may have important consequences for the shock break-out and
supernova light curve. We also argue that some SN progenitors with thin
hydrogen layers produced via Case AB/B transfer might be related to Type IIb
supernova progenitors with relatively small radii of about 10 Rsun.Comment: 16 pages, 15 figures, 2 tables, ApJ, in pres
Use of natural polymers as immobilizing agents and effects on the growth ofDunaliella salina and its glycerol production
Immunotherapy with injectable hydrogels to treat obstructive nephropathy
Hydrogels are gaining attention as injectable vehicles for delivery of therapeutics for a range of applications. We describe self-assembling and injectable Dock-and-Lock hydrogels for local delivery of interleukin-10 (IL-10) to abate the progression of inflammation and fibrosis that leads to chronic kidney disease. As monitored with a fluorescent tag, hydrogels degraded within a few days in vitro and matched IL-10 release profiles; however, hydrogels remained in the kidney for up to 30 days in vivo. A unilateral ureteral obstruction (UUO) mouse model was used to investigate in vivo outcomes after hydrogel injection and IL-10 delivery. Eight groups were investigated (7, 21, 35 days, n=4): healthy, sham, healthy injected with mouse serum albumin (MSA), healthy + hydrogel, UUO, UUO + IL-10, UUO + hydrogel, UUO + hydrogel/IL-10. 15 µL of IL-10, hydrogel, or hydrogel/IL-10 was injected under the renal capsule 3 days after the UUO. Immunohistochemistry (IHC) was performed on paraffin sections to identify macrophages and apoptotic cells and trichrome staining was used to evaluate fibrosis. There were no significant differences in inflammatory markers between all control groups. With hydrogel delivery, macrophage infiltration and apoptosis were significantly reduced at days 21 and 35 compared to untreated animals. By day 35, IL-10 delivery via hydrogel reduced macrophage infiltration and apoptosis more than IL-10 injection alone. Fibrosis was decreased by day 35 in all treatment groups. This work supports the use of hydrogel delivery of IL-10 to treat chronic kidney disease
