3,691 research outputs found

    Alpha radioactivity of E > 11 MEV in nature

    No full text
    Alpha particles with energies greater than those so far reported to occur in nature have been observed in minerals by emulsion and counting techniques

    Response of the warm absorber cloud to a variable nuclear flux in active galactic nuclei

    Get PDF
    Recent modeling of the warm absorber in active galactic nuclei has proved the usefulness of constant total (gas plus radiation) pressure models, which are highly stratified in temperature and density. We explore the consistency of those models when the typical variation of the flux from the central source is taken into account. We perform a variability study of the warm absorber response, based on timescales and our photoionization code TITAN. We show that the ionization and recombination timescales are much shorter than the dynamical timescale. Clouds very close to the central black hole will maintain their equilibrium since the characteristic variability timescales of the nuclear source are longer than cloud timescales. For more distant clouds, the density structure has no time to vary, in response to the variations of the temperature or ionization structure, and such clouds will show the departure from the constant pressure equilibrium. We explore the impact of this departure on the observed properties of the transmitted spectrum and soft X-ray variability: (i) non uniform velocities, of the order of sound speed, appear due to pressure gradients, up to typical values of 100 km/s. These velocities lead to the broadening of lines. This broadening is usually observed and very difficult to explain otherwise. (ii) Energy-dependent fractional variability amplitude in soft X-ray range has a broader hump around ~ 1-2 keV, and (iv) the plot of the equivalent hydrogen column density vs. ionization parameter is steeper than for equilibrium clouds. The results have the character of a preliminary study and should be supplemented in the future with full time-dependent radiation transfer and dynamical computations.Comment: 9 pages, 7 figures, accepted for publication by Astronomy & Astrophysic

    Evidence for new α-particle groups in nature

    No full text
    Alpha-particle spectra from a monazite are presented which show evidence for unreported groups at 6.52, 7.09, 9.02 and 9.07 MeV

    The puzzle of the soft X-ray excess in AGN: absorption or reflection?

    Full text link
    The 2-10 keV continuum of AGN is generally well represented by a single power law. However, at smaller energies the continuum displays an excess with respect to the extrapolation of this power law, called the ''soft X-ray excess''. Until now this soft X-ray excess was attributed, either to reflection of the hard X-ray source by the accretion disk, or to the presence of an additional comptonizing medium, giving a steep spectrum. An alternative solution proposed by Gierlinski and Done (2004) is that a single power law well represents both the soft and the hard X-ray emission and the impression of the soft X-ray excess is due to absorption of a primary power law by a relativistic wind. We examine the advantages and drawbacks of reflection versus absorption models, and we conclude that the observed spectra can be well modeled, either by absorption (for a strong excess), or by reflection (for a weak excess). However the physical conditions required by the absorption models do not seem very realistic: we would prefer an ''hybrid model''.Comment: 4 pages, 3 figures, abstracts SF2A-2005, published by EDP-Sciences Conference Serie

    Mid-infrared sub-wavelength grating mirror design: tolerance and influence of technological constraints

    Full text link
    High polarization selective Si/SiO2 mid-infrared sub-wavelength grating mirrors with large bandwidth adapted to VCSEL integration are compared. These mirrors have been automatically designed for operation at \lambda = 2.3 ÎĽ\mum by an optimization algorithm which maximizes a specially defined quality factor. Several technological constraints in relation with the grating manufacturing process have been imposed within the optimization algorithm and their impact on the optical properties of the mirror have been evaluated. Furthermore, through the tolerance computation of the different dimensions of the structure, the robustness with respect to fabrication errors has been tested. Finally, it appears that the increase of the optical performances of the mirror imposes a less tolerant design with severer technological constraints resulting in a more stringent control of the manufacturing process.Comment: The final publication is available at http://iopscience.iop.org/2040-8986/13/12/125502

    Cathodoluminescence Spectroscopy: An Accurate Technique for the Characterization of the Fabrication Technology of GaAlAs/GaAs Heterojunction Bipolar Transistors

    Get PDF
    Cathodoluminescence (CL) spectroscopy and imaging performed at low temperature have been used to qualify the heterojunction bipolar transistor fabrication technology, particularly the etching and ion implantation steps. CL has been used to optimize low defect technological processes. The protection of the active region during the insulation process has been optimized. The best result is obtained when using a bilayer of silicon nitride and photoresist. In order to minimize it, the damage induced by the etching process has also been studied. The best result is obtained when combining Ar ion beam etching and chemical etching. The possibilities to perform localized spectroscopy, to visualize the different emitting regions and to achieve semiquantitative signal analysis, makes CL a powerful microcharacterization method

    Optimal strategies : theoretical approaches to the parametrization of the dark energy equation of state

    Full text link
    The absence of compelling theoretical model requires the parameterizing the dark energy to probe its properties. The parametrization of the equation of state of the dark energy is a common method. We explore the theoretical optimization of the parametrization based on the Fisher information matrix. As a suitable parametrization, it should be stable at high redshift and should produce the determinant of the Fisher matrix as large as possible. For the illustration, we propose one parametrization which can satisfy both criteria. By using the proper parametrization, we can improve the constraints on the dark energy even for the same data. We also show the weakness of the so-called principal component analysis method.Comment: 7pages, 11 figures, 2 tables, To match the version accepted by AS

    Robust design of Si/Si3N4 high contrast grating mirror for mid-infrared VCSEL application

    Full text link
    A Si/Si3N4 high contrast grating mirror has been designed for a VCSEL integration in mid-infrared ({\lambda} = 2.65 ÎĽ\mum). The use of an optimization algorithm which maximizes a VCSEL mirror quality factor allowed the adjustment of the grating parameters while keeping large and shallow grating pattern. The robustness with respect to fabrication error has been enhanced thanks to a precise study of the grating dimension tolerances. The final mirror exhibits large high reflectivity bandwidth with a polarization selectivity and several percent of tolerance on the grating dimensions.Comment: The final publication is available at http://www.springerlink.com, Optical and Quantum Electronics (2012) Online Firs
    • …
    corecore