370 research outputs found

    Conceptualizing the adventure-sports coach

    Get PDF
    As a comparatively recent development, the adventure-sports coach struggles for a clear and distinct identity. The generic term ‘instructor’ no longer characterizes the role and function of this subgroup of outdoor professionals. Indeed, although the fields of adventure/outdoor education and leadership are comparatively well researched, the arrival of this ‘new kid on the block’ appears to challenge both the adventure-sports old guard and traditional views of sports coaching. In an attempt to offer clarity and stimulate debate, this paper attempts to conceptualize the adventure-sports coach in the context of the existing roles in the field and current motivations for activity in the outdoors. We identify issues that are specific to the adventure-sports coach while also recognizing those skills and competencies shared with other professionals, both in the adventure sports profession and traditional sports coaching fields. Based on this review, we offer a conceptual model which may be used to focus debate, stimulate research and, at a possible later stage, to underpin accreditation, training and professional development

    Aryloxymaleimides for cysteine modification, disulfide bridging and the dual functionalization of disulfide bonds

    Get PDF
    Tuning the properties of maleimide reagents holds significant promise in expanding the toolbox of available methods for bioconjugation. Herein we describe aryloxymaleimides which represent 'next generation maleimides' of attenuated reactivity, and demonstrate their ability to enable new methods for protein modification at disulfide bonds

    Forecasting the duration of volcanic eruptions: an empirical probabilistic model

    Get PDF
    The ability to forecast future volcanic eruption durations would greatly benefit emergency response planning prior to and during a volcanic crises. This paper introduces a probabilistic model to forecast the duration of future and on-going eruptions. The model fits theoretical distributions to observed duration data and relies on past eruptions being a good indicator of future activity. A dataset of historical Mt. Etna flank eruptions is presented and used to demonstrate the model. The data has been compiled through critical examination of existing literature along with careful consideration of uncertainties on reported eruption start and end dates between the years 1300 AD and 2010 and data following 1600 is considered to be reliable and free of reporting biases. The distribution of eruption durations between the years 1600 and 1670 is found to be statistically different from that following 1670 and represents the culminating phase of a century-scale cycle. The forecasting model is run on two datasets ofMt. Etna flank eruption durations; 1600-2010 and 1670-2010. Each dataset is modelled using a log-logistic distribution with parameter values found by maximum likelihood estimation. Survivor function statistics are applied to the model distributions to forecast (a) the probability of an eruption exceeding a given duration, (b) the probability of an eruption that has already lasted a particular number of days exceeding a given total duration and (c) the duration with a given probability of being exceeded. Results show that excluding the 1600-1670 data has little effect of the forecasting model result, especially where short durations are involved. By assigning the terms ‘likely’ and ‘unlikely’ to probabilities of 66 % and 33 %, respectively the forecasting model is used on the 1600-2010 dataset to indicate that a future flank eruption on Mt. Etna would be likely to exceed 20 days (± 7 days) but unlikely to exceed 68 days (± 29 days). This model can easily be adapted for use on other highly active, well-documented volcanoes or for different duration data such as the duration of explosive episodes or the duration of repose periods between eruptions

    Evaluation of CD46 re-targeted adenoviral vectors for clinical ovarian cancer intraperitoneal therapy

    Get PDF
    Ovarian cancer accounts for >140 000 deaths globally each year. Typically, disease is asymptomatic until an advanced, incurable stage. Although response to cytotoxic chemotherapy is frequently observed, resistance to conventional platinum-based therapies develop rapidly. Improved treatments are therefore urgently required. Virotherapy offers great potential for ovarian cancer, where the application of local, intraperitoneal delivery circumvents some of the limitations of intravenous strategies. To develop effective, adenovirus (Ad)-based platforms for ovarian cancer, we profiled the fluid and cellular components of patient ascites for factors known to influence adenoviral transduction. Levels of factor X (FX) and neutralizing antibodies (nAbs) in ascitic fluid were quantified and tumor cells were assessed for the expression of coxsackie virus and adenovirus receptor (CAR) and CD46. We show that clinical ascites contains significant levels of FX but consistently high CD46 expression. We therefore evaluated in vitro the relative transduction of epithelial ovarian cancers (EOCs) by Ad5 (via CAR) and Ad5 pseudotyped with the fiber of Ad35 (Ad5T*F35++) via CD46. Ad5T*F35++ achieved significantly increased transduction in comparison to Ad5 (P<0.001), independent of FX and nAb levels. We therefore propose selective transduction of CD46 over-expressing EOCs using re-targeted, Ad35-pseudotyped Ad vectors may represent a promising virotherapy for ovarian cance

    Is symmetry identity?

    Full text link
    Wigner found unreasonable the "effectiveness of mathematics in the natural sciences". But if the mathematics we use to describe nature is simply a coded expression of our experience then its effectiveness is quite reasonable. Its effectiveness is built into its design. We consider group theory, the logic of symmetry. We examine the premise that symmetry is identity; that group theory encodes our experience of identification. To decide whether group theory describes the world in such an elemental way we catalogue the detailed correspondence between elements of the physical world and elements of the formalism. Providing an unequivocal match between concept and mathematical statement completes the case. It makes effectiveness appear reasonable. The case that symmetry is identity is a strong one but it is not complete. The further validation required suggests that unexpected entities might be describable by the irreducible representations of group theory

    Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus

    Get PDF
    The global population at risk from mosquito-borne diseases—including dengue, yellow fever, chikungunya and Zika—is expanding in concert with changes in the distribution of two key vectors: Aedes aegypti and Aedes albopictus. The distribution of these species is largely driven by both human movement and the presence of suitable climate. Using statistical mapping techniques, we show that human movement patterns explain the spread of both species in Europe and the United States following their introduction. We find that the spread of Ae. aegypti is characterized by long distance importations, while Ae. albopictus has expanded more along the fringes of its distribution. We describe these processes and predict the future distributions of both species in response to accelerating urbanization, connectivity and climate change. Global surveillance and control efforts that aim to mitigate the spread of chikungunya, dengue, yellow fever and Zika viruses must consider the so far unabated spread of these mosquitos. Our maps and predictions offer an opportunity to strategically target surveillance and control programmes and thereby augment efforts to reduce arbovirus burden in human populations globally

    Canonical A-to-I and C-to-U RNA Editing Is Enriched at 3′UTRs and microRNA Target Sites in Multiple Mouse Tissues

    Get PDF
    RNA editing is a process that modifies RNA nucleotides and changes the efficiency and fidelity of the central dogma. Enzymes that catalyze RNA editing are required for life, and defects in RNA editing are associated with many diseases. Recent advances in sequencing have enabled the genome-wide identification of RNA editing sites in mammalian transcriptomes. Here, we demonstrate that canonical RNA editing (A-to-I and C-to-U) occurs in liver, white adipose, and bone tissues of the laboratory mouse, and we show that apparent non-canonical editing (all other possible base substitutions) is an artifact of current high-throughput sequencing technology. Further, we report that high-confidence canonical RNA editing sites can cause non-synonymous amino acid changes and are significantly enriched in 3′ UTRs, specifically at microRNA target sites, suggesting both regulatory and functional consequences for RNA editing
    • …
    corecore