1,736 research outputs found

    An experimental study of the sensitivity of helicopter rotor blade tracking to root pitch adjustment in hover

    Get PDF
    The sensitivity of blade tracking in hover to variations in root pitch was examined for two rotor configurations. Tests were conducted using a four bladed articulated rotor mounted on the NASA-Army aeroelastic rotor experimental system (ARES). Two rotor configurations were tested: one consisting of a blade set with flexible fiberglass spars and one with stiffer (by a factor of five in flapwise and torsional stiffnesses) aluminum spars. Both blade sets were identical in planform and airfoil distribution and were untwisted. The two configurations were ballasted to the same Lock number so that a direct comparison of the tracking sensitivity to a gross change in blade stiffness could be made. Experimental results show no large differences between the two sets of blades in the sensitivity of the blade tracking to root pitch adjustments. However, a measurable reduction in intrack coning of the fiberglass spar blades with respect to the aluminum blades is noted at higher rotor thrust conditions

    The Temporally Filtered Navier-Stokes Equations: Propertes of the Residual Stress

    Get PDF
    Recent interest in the development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, provides the motivation for the present paper. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. This includes the frame-invariance properties of the filtered equations and the resulting residual stress. Causal time-domain filters, parametrized by a temporal filter width 0infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger\u27s equation. Finally, finite filter widths are also considered, and both a priori and a posteriori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted for the model problem

    Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production

    Full text link
    O2 and O3 have been long considered the most robust individual biosignature gases in a planetary atmosphere, yet multiple mechanisms that may produce them in the absence of life have been described. However, these abiotic planetary mechanisms modify the environment in potentially identifiable ways. Here we briefly discuss two of the most detectable spectral discriminants for abiotic O2/O3: CO and O4. We produce the first explicit self-consistent simulations of these spectral discriminants as they may be seen by JWST. If JWST-NIRISS and/or NIRSpec observe CO (2.35, 4.6 um) in conjunction with CO2 (1.6, 2.0, 4.3 um) in the transmission spectrum of a terrestrial planet it could indicate robust CO2 photolysis and suggest that a future detection of O2 or O3 might not be biogenic. Strong O4 bands seen in transmission at 1.06 and 1.27 um could be diagnostic of a post-runaway O2-dominated atmosphere from massive H-escape. We find that for these false positive scenarios, CO at 2.35 um, CO2 at 2.0 and 4.3 um, and O4 at 1.27 um are all stronger features in transmission than O2/O3 and could be detected with SNRs \gtrsim 3 for an Earth-size planet orbiting a nearby M dwarf star with as few as 10 transits, assuming photon-limited noise. O4 bands could also be sought in UV/VIS/NIR reflected light (at 0.345, 0.36, 0.38, 0.445, 0.475, 0.53, 0.57, 0.63, 1.06, and 1.27 um) by a next generation direct-imaging telescope such as LUVOIR/HDST or HabEx and would indicate an oxygen atmosphere too massive to be biologically produced.Comment: 7 pages, 4 figures, accepted to the Astrophysical Journal Letter

    Bose-Einstein Condensation in a Harmonic Potential

    Full text link
    We examine several features of Bose-Einstein condensation (BEC) in an external harmonic potential well. In the thermodynamic limit, there is a phase transition to a spatial Bose-Einstein condensed state for dimension D greater than or equal to 2. The thermodynamic limit requires maintaining constant average density by weakening the potential while increasing the particle number N to infinity, while of course in real experiments the potential is fixed and N stays finite. For such finite ideal harmonic systems we show that a BEC still occurs, although without a true phase transition, below a certain ``pseudo-critical'' temperature, even for D=1. We study the momentum-space condensate fraction and find that it vanishes as 1/N^(1/2) in any number of dimensions in the thermodynamic limit. In D less than or equal to 2 the lack of a momentum condensation is in accord with the Hohenberg theorem, but must be reconciled with the existence of a spatial BEC in D=2. For finite systems we derive the N-dependence of the spatial and momentum condensate fractions and the transition temperatures, features that may be experimentally testable. We show that the N-dependence of the 2D ideal-gas transition temperature for a finite system cannot persist in the interacting case because it violates a theorem due to Chester, Penrose, and Onsager.Comment: 34 pages, LaTeX, 6 Postscript figures, Submitted to Jour. Low Temp. Phy

    Carving out OPE space and precise O(2) model critical exponents

    Get PDF
    We develop new tools for isolating CFTs using the numerical bootstrap. A “cutting surface” algorithm for scanning OPE coefficients makes it possible to find islands in high-dimensional spaces. Together with recent progress in large-scale semidefinite programming, this enables bootstrap studies of much larger systems of correlation functions than was previously practical. We apply these methods to correlation functions of charge-0, 1, and 2 scalars in the 3d O(2) model, computing new precise values for scaling dimensions and OPE coefficients in this theory. Our new determinations of scaling dimensions are consistent with and improve upon existing Monte Carlo simulations, sharpening the existing decades-old 8σ discrepancy between theory and experiment

    The Superconducting Condensation Energy and an Antiferromagnetic Exchange Based Pairing Mechanism

    Full text link
    For the traditional low T_c superconductors, the superconducting condensation energy is proportional to the change in energy of the ionic lattice between the normal and superconducting state, providing a clear link between pairing and the electron-ion interaction. Here, for the t-J model, we discuss an analogous relationship between the superconducting condensation energy and the change in the exchange energy between the normal and superconducting states. We point out the possibility of measuring this using neutron scattering and note that such a measurement, while certainly difficult, could provide important evidence for an exchange interaction-based pairing mechanism.Comment: Replaced with revised versio
    corecore