
Old Dominion University
ODU Digital Commons

CCPO Publications Center for Coastal Physical Oceanography

2003

The Temporally Filtered Navier-Stokes Equations:
Propertes of the Residual Stress
C. D. Pruett

T. B. Gatski

Chester E. Grosch
Old Dominion University, cxgrosch@odu.edu

W. D. Thacker

Follow this and additional works at: https://digitalcommons.odu.edu/ccpo_pubs

Part of the Fluid Dynamics Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

This Article is brought to you for free and open access by the Center for Coastal Physical Oceanography at ODU Digital Commons. It has been
accepted for inclusion in CCPO Publications by an authorized administrator of ODU Digital Commons. For more information, please contact
digitalcommons@odu.edu.

Repository Citation
Pruett, C. D.; Gatski, T. B.; Grosch, Chester E.; and Thacker, W. D., "The Temporally Filtered Navier-Stokes Equations: Propertes of
the Residual Stress" (2003). CCPO Publications. 185.
https://digitalcommons.odu.edu/ccpo_pubs/185

Original Publication Citation
Pruett, C.D., Gatski, T.B., Grosch, C.E., & Thacker, W.D. (2003). The temporally filtered Navier-Stokes equations: Properties of the
residual stress. Physics of Fluids, 15(8), 2127-2140. doi: 10.1063/1.1582858

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/ccpo_pubs/185?utm_source=digitalcommons.odu.edu%2Fccpo_pubs%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu


The temporally filtered Navier–Stokes equations: Properties
of the residual stress

C. D. Pruett
Department of Mathematics & Statistics, James Madison University, Harrisonburg, Virginia 22807

T. B. Gatski
Computational Modeling & Simulation Branch, NASA Langley Research Center, Hampton, Virginia 23681

C. E. Grosch
Departments of Ocean, Earth & Atmospheric Sciences and Computer Science, Old Dominion University,
Norfolk, Virginia 23529

W. D. Thacker
Department of Physics, Parks College, Saint Louis University, St. Louis, Missouri 63156

~Received 18 September 2002; accepted 14 April 2003; published 12 June 2003!

Recent interest in the development of a unifying framework among direct numerical simulations,
large-eddy simulations, and statistically averaged formulations of the Navier–Stokes equations,
provides the motivation for the present paper. Toward that goal, the properties of the residual
~subgrid-scale! stress of thetemporallyfiltered Navier–Stokes equations are carefully examined.
This includes the frame-invariance properties of the filtered equations and the resulting residual
stress. Causal time-domain filters, parametrized by a temporal filter width 0,D,`, are considered.
For several reasons, the differential forms of such filters are preferred to their corresponding integral
forms; among these, storage requirements for differential forms are typically much less than for
integral forms and, for some filters, are independent ofD. The behavior of the residual stress in the
limits of both vanishing and infinite filter widths is examined. It is shown analytically that, in the
limit D→0, the residual stress vanishes, in which case the Navier–Stokes equations are recovered
from the temporally filtered equations. Alternately, in the limitD→`, the residual stress is
equivalent to the long-time averaged stress, and the Reynolds-averaged Navier–Stokes equations
are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits
of filter width is further validated by numerical simulations of the temporally filtered forced, viscous
Burger’s equation. Finally, finite filter widths are also considered, and botha priori anda posteriori
analyses of temporal similarity and temporal approximate deconvolution models of the residual
stress are conducted for the model problem. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1582858#

I. INTRODUCTION

The Navier–Stokes equations can be solved numerically
to predict turbulent flows; however, due to the enormous
computational expense required to extract a solution from
these equations for flows of engineering interest, it has been
necessary in most cases to revert to alternate formulations.
For current purposes, three computational approaches are
considered: direct numerical simulation~DNS!, large-eddy
simulation ~LES!, and Reynolds-averaged Navier–Stokes
~RANS! computations. These differ primarily in the level of
approximation required to achieve closure.

By definition, DNS is the numerical solution of the
Navier–Stokes equations without recourse to modeling. In
concept, fluid motions are resolved down to the Kolmogorov
length scale. Kolmogorov theory1 predicts the ratio of the
integral scale to the Kolmogorov scale to be on the order of
Re3/4, where Re is the Reynolds number based upon the
integral scale. In three spatial dimensions and time, the com-
putational requirements of DNS scale as Re3. Consequently,
for the high Reynolds number flows of engineering interest

the computational requirements of fully resolved DNS are
staggering. DNS at moderate Re is currently viable for cer-
tain prototypical problems such as isotropic turbulence or
laminar-turbulent transition on flat plates, cylinders, and
cones. For these problems, DNS plays an invaluable role
both in elucidating fundamental phenomena and in serving
as a yardstick to validate LES and RANS.

For LES, the separation of the field variables into re-
solved and unresolved~spatial! scales is effected by filtering
the fields with a low-pass filter. Filtering the momentum
equations generates residual~subgrid-scale! stresses that re-
quire closure either by modeling or approximation. Recent
advances such as dynamic modeling2 and deconvolution
methods3,4 have made LES practical for application to cer-
tain flows of engineering interest.5

Long-time averaging of the Navier–Stokes equations re-
sults in the RANS equations for the time-independent mean
state. RANS methodology is generally applied to statistically
steady flows. To close the system of equations, a model is
needed for the Reynolds-stress tensor. Although RANS is
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computationally appealing, it places a heavy burden on the
Reynolds-stress model, which must incorporate the effects of
all the unsteady motions upon the mean.

While the formal linkage of the LES and RANS equa-
tions has been well established,6,7 it is of interest to investi-
gate whether this linkage can be extended practically by de-
veloping filtering and averaging procedures that yield
mutually consistent solution fields. A possible unifying con-
text for these methodologies is afforded by filter theory.
However, the linkage between LES and RANS may be more
natural within the context of time-domain filtering rather
than the traditional spatial filtering commonly used in LES.
Accordingly, the present study focuses on the temporally fil-
tered Navier–Stokes~TFNS! equations and the resultant
residual-stress fields.

In Sec. II causal time-domain filters are discussed, and
differential forms are derived for two candidate filters: an
exponential filter and a Heaviside filter. The TFNS equations
are formulated in Sec. III. Characteristic properties of these
equations are discussed, and ancillary issues related to com-
mutativity and frame-invariance are also addressed. Addi-
tionally, analyses of the asymptotic behaviors of the residual
stress for limiting values of filter width are presented. Fi-
nally, temporal residual-stress models are proposed for the
case of finite filter width. In Sec. IV, the numerical solution
of the forced, viscous Burger’s equation is used to validate
the analytical results as well as to evaluate the proposed tem-
poral residual-stress models bya priori analyses. Further
validation of the proposed residual-stress models bya poste-
riori analyses is provided in Sec. V. Concluding remarks are
offered in Sec. VI.

II. PROPERTIES OF TIME-DOMAIN FILTERS

Time-domain filters are classified ascausalor acausal,8

depending upon whether they are applicable to real-time ora
posterioridata processing, respectively. The interest here lies
in real-time applications for which only causal filtering is
appropriate; accordingly, the focus in this study is restricted
to causal filters. While aspects of time-domain filters have
been discussed previously in this context,9 it is worthwhile to
reiterate some fundamental relationships for completeness.

Let f (t) be a continuous function of timet. A causal
linear filter is readily constructed by the integral operator

f̄ ~ t;D!5E
2`

t

G~t2t;D! f ~t!dt, ~1!

whereG is a parametrized filter kernel, and the parameterD
is the filter width. ~The convention of using semicolons to
separate parameters from independent variables in argument
lists is adopted here.! In general, admissible kernels must
satisfy the following property:

G~ t;D![
1

D
gS t

D D , ~2!

whereg is any integrable function such that

g~ t !>0, E
2`

0

g~ t !dt51, g~0!51. ~3!

The non-negativity and normalization constraints in Eq.~3!
imply that

lim
t→2`

g~ t !50, ~4!

and suffice forG to approach a Dirac delta function as its
parameterD→0; that is,

lim
D→0

f̄ ~ t;D!5 lim
D→0

E
2`

t

G~t2t;D! f ~t!dt

5E
2`

t

d~t2t ! f ~t!dt5 f ~ t !. ~5!

Two examples of simple, useful filters are obtained by use of
an exponential function and a Heaviside function as kernels.
For the exponential function, the kernel is

g~ t !5exp~ t !→G~ t;D!5
exp~ t/D!

D
, ~6!

and the resulting integral operator in Eq.~1! is

f̄ ~ t;D!5
1

D E
2`

t

expS t2t

D D f ~t!dt. ~7!

Using the shifted Heaviside functionH(t11) asg(t) yields
the parametrized kernelG(t;D)5(1/D)H(t1D) and the in-
tegral operator

f̄ ~ t;D!5
1

D E
t2D

t

f ~t!dt. ~8!

The effect of a filter is most apparent from its transfer
function H(V8), which quantifies its amplitude and phase
effects in Fourier space as a function of dimensionless fre-
quencyV85vD. Specifically, for a causal time-domain filter

H~V8!5E
2`

0

G~t;D!exp~ivt!dt, ~9!

wherev is the circular frequency, andi5A21. The order of
a filter is associated with the flatness of the modulus of its
transfer function near the origin~V850!. Because the expo-
nential and Heaviside filters have zero slope but nonvanish-
ing second derivatives at the origin, both are classified as
first-order filters. However, as Fig. 1 shows, their transfer
functions differ significantly away from the origin.

A drawback of the integral formulations just presented is
the need to retain the long-time history of the solution field.
However, by considering instead differential forms of the
filter operators, storage requirements are reduced signifi-
cantly, subject to the intrinsic storage needs of the numerical
time-advancement scheme itself~for example, low-storage
Runge–Kutta!. By differentiating Eqs.~7! and~8!, the differ-
ential forms of the exponential and Heaviside filters are
given by

]

]t
f̄ ~ t;D!5

f ~ t !2 f̄ ~ t;D!

D
, ~10!

and
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]

]t
f̄ ~ t;D!5

f ~ t !2 f ~ t2D!

D
, ~11!

respectively.
When causal filtering is applied to a temporally dis-

cretized problem with a time increment ofDt, the action of
the filter is naturally parametrized by the filter-width ratior
defined as

r 5
D

Dt
. ~12!

For the exponential and Heaviside filters, respectively, the
parametrized transfer functions are

H~V;r !5
1

11irV
, ~13a!

H~V;r !5
12exp~2irV!

irV
, ~13b!

whereV5vDt. Figure 2 shows the modulus of the transfer
function of the exponential filter for selected values of the
filter-width ratio. Note thatV5p corresponds to a sampling
rate at the Nyquist frequency, and that filtering atV.p is

disallowed because it results in unacceptable aliasing error.
Note also thatr 50 yieldsH(V;0)51, which eliminates the
filter.

In order to illustrate the discrete differential filtering pro-
cess, a 2p-periodic time series is processed by the exponen-
tial differential filter given in Eq.~10!. The time series is
generated from a23/2 power-law decay in Fourier fre-
quency space, and the phases are assigned randomly. The
continuous signal is then sampled at a rate of 512 per period
and replicated for three periods. The filtered time series,f̄ , is
then generated by solving Eq.~10! from the initial condition
f̄ (0;D)5 f (0). There are many appropriate numerical inte-
gration schemes. Because the right-hand side of the differen-
tial form of a linear filter is itself linear, fully implicit
Adams–Moulton methods are particularly attractive because
of their accuracy and efficiency. Here, standard fourth-order
Adams–Moulton methodology is used. The method is started
with initial steps of orders one, two, and three, respectively.

The filter-width ratio, r, is the only parameter of the
differential filter. In general, the larger the value ofr, the
more dissipative the filter.~In this context, a ‘‘dissipative’’
low-pass filter is one with significant and broad-band attenu-
ation of high-frequency Fourier harmonics.! The method re-
mains viable for all values of filter-width ratio (0,r ). For
r'0, the evolution equation becomes stiff, and small time
steps are necessary. Figure 3 compares the filtered time series
with the unfiltered signal for selected values of the filter-
width ratio r. As r increases, the output time series becomes
smoother and its amplitude diminishes due to the removal of
energy at the higher frequencies. As is typical for causal
filters, high levels of numerical dissipation generate signifi-
cant phase lag in the output relative to the input. Figure 4
compares the input signal with the original output signal and
with an output that is phase compensated byr time steps.
The phase-compensated signal is an excellent representation
of the input, minus its high-frequency components.

III. TEMPORALLY FILTERED NAVIER–STOKES
EQUATIONS

Temporal, causal filtering of the Navier–Stokes equa-
tions using Eq.~1! leads to the following form of the TFNS
equations:

FIG. 1. Transfer functions of causal exponential and Heaviside filters.

FIG. 2. Transfer function of parametrized exponential filter as a function of
filter-width ratio.

FIG. 3. Differentially filtered time seriesf (t).
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]ū j

]xj
50, ~14!

]ūi

]t
1

]~ ūi ū j !

]xj
52

] p̄

]xi
1n

]2ūi

]xj]xj
2

]@tR# i j

]xj
, ~15!

whereui is the velocity,p is the pressure, andn is the kine-
matic viscosity. An overbar denotes a temporal grid-filtered
quantity, and@tR# i j represents the temporal residual-stress
tensor defined as

@tR# i j [uiuj2ūi ū j . ~16!

Provided that filtering and differentiation operations com-
mute, the TFNS equations areformally identical to the spa-
tially filtered Navier–Stokes equations. As pointed out pre-
viously by Pruett,9 commutativity is natural for temporal
filters but remains problematic for spatial ones.10,11 It is now
recognized12–14 that this formal equivalence doesnot imply
quantitative equivalence of the residual-stress fields. In gen-
eral, for spatialor temporal grid filters, the residual stress
depends strongly upon the filter, particularly upon its filter
width and order property, which influence both the magni-
tude and the distribution of the residual stress. The implica-
tion of this growing awareness is that the residual-stress
model cannot be independent of the choice of the filter. To
make explicit its formal dependence upon the specific tem-
poral filter, the residual stress is denoted by@tR# i j (D) where
appropriate.

Before examining the effect of the filter widthD on the
behavior of the residual stress, it is useful to establish some
of the frame-invariance properties of both the TFNS equa-
tions and the temporal residual stress@tR# i j .

A. Frame-invariance properties

It has been shown previously9 that the TFNS equations
are frame invariant under the Galilean group of transforma-
tions. In order to further explore the range of applicability as
well as limits of the TFNS formulation, it is useful to exam-
ine the frame-invariance properties of the TFNS under the
more general Euclidean group of transformations.

Examining the transformation properties of the Navier–
Stokes equations even under the Euclidean group is rela-
tively straightforward and the various forms of the equations
in the noninertial frames are well known. However, when
temporal filtering of the variables as well as the governing
equations is involved, care must be exercised in order to
obtain the proper relations and interpretation of the results.
This is due to the fact that the direction cosinesQi j of the
transformation are time dependent and as such become nec-
essarily coupled to and inseparable from the flow variables
under the filtering process.

In order to properly interpret the results of the transfor-
mations, it is necessary to identify the frame of reference that
serves as the base Eulerian system, that is, the frame in
which the observer is fixed. Consider the rectangular coordi-
natesxi* of a point in a frame of reference in arbitrary time-
dependent motion~rotation and translation! relative to an
inertial frame with corresponding coordinatesxi . In the first
case, the observer is fixed in the inertial frame. Under the
Euclidean group, the spatial coordinates and corresponding
velocity field then transform as

xi* ~ t* !5Qi j @xj1bj #, ~17a!

ui* ~ t* ,xk* !5Q̇i j @xj1bj #1Qi j @uj1ḃ j #, ~17b!

whereQ5Q(t) is a time-dependent proper orthogonal tensor
(QQT5I , detQ511, I is the identity tensor!, ~˙! denotes the
time derivative, andbj5bj (t) is any time-dependent vector
with t* 5t1t0 (t0 is an arbitrary constant time shift!. The
temporal filter widths in the respective frames are unaffected
~D*5D! by such transformations and do not need to be con-
sidered explicitly in the remainder of the frame-invariance
discussion. In this case, to an observer in the inertial frame,
the spatial coordinates in the noninertial frame vary with
time; whereas, the spatial coordinates in the inertial Eulerian
frame are fixed.

In the second case, the observer is fixed in the noniner-
tial frame. Under the Euclidean group, the spatial coordi-
nates and corresponding velocity field then transform as

xj~ t !5Qi j xi* 2bj , ~18a!

uj~ t,xk!5Qi j ui* 1Q̇i j xi* 2ḃ j . ~18b!

In this case, to an observer in the noninertial frame, the spa-
tial coordinates in the inertial frame vary with time; whereas,
the spatial coordinates in the noninertial Eulerian frame are
fixed. With this background, the frame-invariant questions
pertinent to the properties of the filtered and residual vari-
ables as well as the TFNS equations in the noninertial frame
xi* can be addressed.

For the case where the inertial frame is the Eulerian
frame, the transformation properties of the filtered spatial
coordinates and filtered velocity fields can be written as

xi* 5Q̄i j xj1Qi j bj , ~19a!

ui* ~ t* ,xk* !5Q̇i j @xj1bj #1Qi j @uj1ḃ j #, ~19b!

FIG. 4. Original, exponentially filtered, and phase-compensated time series
f (t) for r 532.

2130 Phys. Fluids, Vol. 15, No. 8, August 2003 Pruett et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.82.253.83 On: Fri, 16 Oct 2015 18:33:42



wherex̄ j5xj for the ~inertial! Eulerian system. For the case
where the noninertial frame is the Eulerian frame, the trans-
formation properties of the filtered spatial coordinates and
filtered velocity fields can be written as

x̄ j5Q̄i j xi* 2b̄ j , ~20a!

ū j5Qi j ui* 1 Q̄̇i j xi* 2 b̄̇ j , ~20b!

wherexi* 5xi* for the ~noninertial! Eulerian system.
It is easily seen from Eqs.~19b! and ~20b! that the fil-

tered velocity fields are not frame invariant under a Euclid-
ean transformation—a result consistent with that obtained for
the ~spatial filtered! LES approach.15 However, due to the
inseparable coupling of the direction cosinesQi j with the
velocity field, the filtered velocity field does not transform in
the same manner as the unfiltered velocity field—a result that
contrasts with that obtained for the~spatial filtered! LES
approach.15 For the subset group of Galilean transformations,
whereQi j is time independent andbj52Vjt (Vj are con-
stant components of a translational velocity imposed on the
noninertial frame!,16 the filtered velocity field transforms in
the same way as the unfiltered velocity—a result consistent
with the~spatial filtered! LES approach,17 but in contrast to a
result arrived at in a previous study.9

The next question to address is the transformation prop-
erties of the residual fields. These fields are the differences
between the instantaneous and filtered fields. For the case
where the Eulerian frame is the inertial frame, Eqs.~17b! and
~19b! yield

ũi* 5ui* 2ui* 5@Qikuk2Qikuk#1@Q̇ik2 Q̄̇ik#xk

1@~Qi
˙
kbk!2~Qi

˙
kbk, ~21a!

and for the case where the Eulerian frame is the noninertial
frame, Eqs.~18b! and ~20b! yield

ũ j5uj2ū j5@Qk juk* 2Qk juk* #

1@Q̇k j2 Q̄̇k j#xk* 2@ ḃ j2 b̄̇ j #. ~21b!

A comparison of Eqs.~21a! and~21b! shows that the residual
velocity field is not frame-invariant under the Euclidean
group—a result that contrasts with that obtained for the~spa-
tial filtered! LES approach.15 However, as will be shown in
the following, for the Galilean group the residual velocity
field is frame-invariant.

The final transformation property under the Euclidean
group to be addressed is the form of the TFNS equations in
the noninertial frame. As is well known, the Navier–Stokes
equations are not frame-invariant under the Euclidean group
since in a noninertial frame they take the form

Dui*

Dt*
5

]ui*

]t*
1uk*

]ui*

]xk*
52

]P*

]xi*
1n

]2ui*

]xk* ]xk*
12V ikuk*

1V̇ikxk* , ~22a!

with a modified pressureP* ~that includes both the centrifu-
gal acceleration and the translational acceleration! given by

P* 5p* 1 1
2VklV lnxn* xk* 2Qnkb̈k* xn* , ~22b!

where the rotation rate tensorV i j represents the angular ve-
locity of the noninertial frame relative to the inertial frame
and is defined by

V ik[Q̇il Qkl . ~23!

Since b̈n is frame invariant, the~objective! transformation
b̈k* 5Qknb̈n has been used in Eq.~22b!. @Note that Eq.~22!
can be derived directly starting with the transformation prop-
erties described in Eq.~18!.# The question now is: For an
observer fixed in the noninertial Eulerian frame, what form
do the TFNS equations take under the Euclidean transforma-
tion group? These equations can be obtained by first taking
the material derivative of Eq.~17b! and then filtering

Dui*

Dt*
52Q̈klQil xk* 22Q̇klQil uk* 1Qi j

Duj

Dt
1Qi j b̈j

5~V̇ik2V i l V lk!xk* 12V ikuk* 1Qi j

Duj

Dt
1Qi j b̈j ,

~24a!

where the Navier–Stokes equations in the inertial frame are
used to obtain

Qi j

Duj

Dt
52Qi j

]p

]xj
1nQi j

]2ui

]xk]xk
52

]p*

]xi*
1n

]2ui*

]xk* ]xk*
.

~24b!

Introducing the residual stress into the formulation, Eq.~24a!
can then be written in the form

]ui*

]t*
1uk*

]ui*

]xk*

52
]P*

]xi*
1n

]2ui*

]xk* ]xk*
12V ikuk* 1 V̄̇ikxk* 2

]@tR# ik*

]xk*
,

~25a!

where

P* 5p* 1 1
2VklV lnxn* xk* 2b̈k* xk* , ~25b!

and

@tR# ik* 5ui* uk* 2ui*̄ uk*̄ . ~25c!

It is clear from a comparison between Eqs.~22! and~25! that
the TFNS do not in general retain the same form as the
Navier–Stokes equations in the noninertial frame under the
Euclidean group—a result that contrasts with that obtained
for the ~spatial filtered! LES approach.15 The differences lie
in the form of the Coriolis and centrifugal acceleration terms,
as well as the rotational acceleration term. The Coriolis ac-
celeration is the most significantly affected due to the insepa-
rable coupling with the velocity field brought about by the
temporal filtering process. For the important case of constant
rotation rateV i j and nonaccelerating translational frames,
Eq. ~25! can be written in the form
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]ui*

]t*
1uk*

]ui*

]xk*
52

]P*

]xi*
1n

]2ui*

]xk* ]xk*

12V ikuk* 2
]@tR# ik*

]xk*
, ~26a!

where

P* 5p* 1 1
2VklV lnxn* xk* . ~26b!

In this case, the TFNS equations retain the same form as the
Navier–Stokes equations in the noninertial frame.

As the TFNS equations show, the residual stress@tR# ik*
given in Eq.~25c! is defined in the same manner as its iner-
tial frame counterpart. Nevertheless, models developed for
the residual stress field will suffer from the same deficiencies
as the residual velocity field under the Euclidean group. The
reason, stated previously, is the unavoidable coupling be-
tween the time-dependent relative motion of the frames and
the time-dependent flow field. From a modeling standpoint,
models for@tR# ik* developed for inertial frames may not suf-
fice in the noninertial frames and will have to be modified to
account for the noninertial effects. This is neither surprising
nor uncommon, because turbulent flow models routinely ac-
count for such rotational effects.

The analysis to this point has been rather general and
necessarily detailed. To bring the section to a close, it is
worthwhile to limit the discussion to the more familiar Gal-
ilean group of transformations where the frame-invariance
properties are, in general, consistent with spatial filtered LES
results. Inspection of Eqs.~17b! and ~21! shows that under
the Galilean group (Qi j and ḃ j52Vj constant!, both the
filtered velocity and unresolved velocity consistently trans-
form and are given by

ui* 5Qi j @ ū j1Vj #, ũi* 5Qi j ũj . ~27!

Thus, the unresolved velocity fieldũi as well as the filtered
unresolved velocity field are frame indifferent under the Gal-
ilean group. With these properties for both the filtered and
unresolved velocity fields, it can also be shown that the re-
sidual stress@tR# is now frame invariant, so that

@tR# i j* 5QikQjl @tR#kl . ~28!

The Galilean transformation properties established for the
temporal filtering process are similar to those established for
the spatial filtering process.17 This group invariance of the
TFNS equations and the residual stress given by Eq.~28!
shows that the evolution of the filtered scales of motion is the
same. In addition, this result will be used in Sec. III B to
further validate the equivalence of the residual stress and the
long-time averaged stress in the limit of infinite filter width.

B. Limiting behaviors

Of interest in this section is the effect of filter widthD on
the residual stress@tR# i j . It is easily shown that the@tR# i j

vanishes in the limitD→0. In this limit, the kernel function
reduces to a Dirac delta function@see Eq.~5!# so that

lim
D→0

@tR# i j ~ t,x;D!5 lim
D→0

~uiuj2ūi ū j !5~uiuj2uiuj !50.

~29!

The vanishing of the temporal residual stress, coupled with
the replacement of the other filtered quantities by their unfil-
tered counterparts, leads to the recovery of the Navier–
Stokes equations from the TFNS equations in the limitD→0.

The other limit of interest isD→`. However, before
examining the behavior of the residual stress in this limit, it
is useful to examine some characteristics of the filtered ve-
locity field itself. It follows from the differential forms of
either the exponential or Heaviside differential filters given
in Eq. ~10! or ~11! that

lim
D→`

]ūi

]t
~ t,x;D!50, ~30!

where bothui and ūi are assumed bounded. The above-
mentioned condition establishes thatūi(t,x;`) is actually
independent of timet. @In fact, for Eq.~30! to hold, it suffices
that ui is bounded and thatug8(t)u is integrable on~2`,0#.#
Thus, Eq. ~30! applies to a wide class of filters. For the
causal temporal filter defined in Eq.~1! with the Heaviside
kernel ~for convenience!, ūi(t,x;`) can be written as

lim
D→`

ūi~ t,x;D!5ūi~0,x;`!5 lim
D→`

1

D E
2D

0

ui~t,x!dt.

~31!

Equation~31! holds for any filter for whichH(0)51, which
is typical of low-pass filters. The right-hand side of Eq.~31!
simply defines the long-time average of the variableui(t,x),
which, for a stationary process, is equivalent to the ensemble
average according to the ergodic hypothesis. That is, for a
stationary flow

ūi~0,x;`!5E$ui~ t,x!%, ~32!

where E$ % denotes the expected value~or ensemble aver-
age!. However, Eq.~30! has shown thatūi(t,x;`) is constant
with respect to time so that

ūi~ t,x;`!5ūi~0,x;`!5E$ui~ t,x!%5Ui~x!, ~33!

and

lim
D→`

]

]t
ūi~ t,x;`!5

]

]t
E$ui~ t,x!%50. ~34!

In the current time-filtered approach, Eq.~33! provides the
link between the resolved motions of the variableui(t,x) and
the ensemble meanUi(x). Because the variableui(t,x) can
be partitioned either into a sum of resolvedūi(t,x;`) and
temporally unresolved motionsũi(t,x), or into a sum of time
mean Ui(x) and fluctuatingui8(t,x) quantities, it follows
from Eq. ~33! that

ũi~ t,x;`!5ui8~ t,x!. ~35!

In addition to the equality between the resolved and mean
fields in the limit, Eq.~35! shows the linkage between the
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temporally unresolved and fluctuating motions. With these
results, it is now possible to examine the limiting behavior of
the residual stress.

By the linearity of the filter operator, the residual stress
defined in Eq.~16! can be written as

lim
D→`

@tR# i j ~D!5 lim
D→`

@~ ūi ū j1ūi ũ j1ũi ū j1ũi ũ j !2ūi ū j #,

~36!

where the instantaneous velocity field has been partitioned
into resolved and unresolved parts. Because Eqs.~32! and
~33! establish an equality between the resolved and ensemble
mean fields, and the residual and fluctuating fields, respec-
tively, Eq. ~36! can be simplified to

lim
D→`

@tR# i j ~D!5E$uj8E$ui%1ui8E$uj%1ui8uj8%

5E$ui8uj8%5t i j . ~37!

That is, for a stationary flow the residual stress (@tR# i j ) as-
ymptotically approaches the Reynolds stress (t i j ) asD→`.
It is well known16 that the long-time averaged stress is Gal-
ilean invariant. As was shown in Eq.~28!, the residual stress
also retains this feature, which further validates the equiva-
lence of the two stress fields established in Eq.~37!.

C. Finite filter width

For finite filter width, the residual stress represents the
dynamics of a broad spectral range of motions. The TFNS
equations provide a governing set of equations suitable for
time-filtered LES9 ~or TLES!, for which ~accurate! modeling
of @tR# i j is required for closure.

The temporal variants of two well-known residual-stress
models for@tR# i j are considered: Bardina’s scale-similarity
model18 ~SSM!; and the approximate deconvolution model
~ADM ! of Stolz and Adams.4 The time-filtered counterparts
of these models are referred to as the temporal scale-
similarity model~TSSM! and the temporal approximate de-
convolution model~TADM !, respectively.

Consider first a TSSM that is formally equivalent to the
Bardina model,18

@tR# i j 'ūi ū j2u% iu% j ~TSSM!. ~38!

As in the Bardina model, the same~temporal! filter width is
used for the primary and secondary~test! filters. Next, the
TADM considered is formally equivalent to the second of the
ADM models presented by Stolz and Adams,4

@tR# i j 'v iv j2 v̄ i v̄ j ~TADM !, ~39!

wherev i is an approximate deconvolution ofūi ; that is,v i

approximatesui based upon approximately defiltering~de-
convolving! ūi . Following Stolz and Adams, the zeroth- and
first-order deconvolutions ofūi yield v i5ūi and v i52ūi

2u% i , respectively. Higher-order~and more accurate! decon-
volutions are possible. Note that the TADM~ADM ! general-
izes the TSSM~SSM!, because the zeroth-order deconvolu-
tion is the TSSM.~Appropriately, Stolz and Adams4 refer to
the second of their ADM models as the generalized SSM
model.! Consequently, we use the single nomenclature

@tR#mod for both models. It should be noted that the temporal
residual-stress models given in Eqs.~38! and~39! are frame-
indifferent under Galilean transformations; a property that
the exact residual stress has been shown in Eq.~28! to have.

In Sec. IV, ana priori analysis of the predictive capabil-
ity of these two residual-stress models will be performed.

IV. FORCED VISCOUS BURGER’S EQUATION

While it is desirable and ultimately necessary to validate
the analytical results previously established in simulations of
the full TFNS equations, the wide range of parameter values
considered here renders such analyses cost prohibitive. How-
ever, it is possible to illustrate the dependence of the residual
stress upon the temporal filter width, in general, and the
asymptotic behaviors discussed previously, in particular, by
simulations of a spatially one-dimensional model problem.
To this end, consider the forced, viscous Burger’s equation
~VBE!, written in the form

]u

]t
1

1

2

]~u2!

]x
5n

]2u

]x2
1F~ t,x! ~0,x,2p!, ~40!

with u(t,x) a velocity,F(t,x) an imposed forcing function,
andn a viscosity. The initial condition isu(0,x)51. Without
forcing, the initial condition results in a velocity field that is
constant for all time and space. Moreover, any perturbations
of that field decay toward zero, so that constant ‘‘stirring’’ is
required to maintain high-intensity fluctuations.19 This equa-
tion can be solved accurately by a Galerkin Fourier spectral
method in space coupled with classical fourth-order Runge–
Kutta ~RK4! time advancement. A Fourieransatzis assumed
for u and substituted into the governing equation. This results
in a system of coupled ordinary differential equations for the
complex Fourier coefficientsUk , k52n/2,...,21,0,11...,
1n/2. ~Due to conjugate symmetry, onlyn/211 non-
negative modes are solved for explicitly.! The equations are
coupled through their nonlinear terms, which are evaluated
exactly in Fourier space by Cauchy products. Hence, explicit
de-aliasing is unnecessary.

For this forced case,n5256, and each Fourier mode in
the band 1<k<kF is independently subjected to periodic
forcing Fk(t) such thatFk(t)5Afk exp(ivkt) with real fre-
quency vk5kv. The band limitkF532, the fundamental
frequencyv51, and the amplitudeA50.4 ~the same for all
modes! are input parameters, and the time increment is 0.005
throughout. The complex phasesfk5exp(iak) are assigned
initially by random numbersak uniformly distributed on
@0,2p#. Thereafter, they remain fixed. As will be shown, after
a long-time evolution, a statistically steady flow results. Be-
cause, at smalln, the viscous Burger’s equation admits solu-
tions with steep shock fronts, only a moderately large value
of n is practical. For the valuen51/300 and forcing distri-
bution, the flow is highly resolved in both time and space,
with Fourier amplitudes at the highest wavenumbers of less
than 10210.

Causally filtering the forced VBE results in the follow-
ing equation, which can be considered as a one-dimensional
analog of the TFNS equation given in Eq.~15!:
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]ū

]t
1

1

2

]~ ūū!

]x
5n

]2ū

]x2
1F̄~ t,x!2

1

2

]@tR#

]x

~0,x,2p!. ~41!

Filtering generates a residual stress given by

@tR#5uu2ūū. ~42!

In Fig. 5, the instantaneous unfiltered velocity field, obtained
from the solution of Eq.~40! at t510 (Dt50.005), is com-
pared with the filtered field, which satisfies Eq.~41!, for
selected values of the filter-width ratior. Clearly, filtering in
time to remove high frequencies effects the removal of en-
ergy at high wavenumbers as well.

As implied in Sec. III B, the behaviors of the residual
stress for limiting values of the temporal filter widthD are
key results of the temporally filtered methodology being
studied. To illustrate these predicted behaviors in the limits
D→0 andD→`, the model problem is particularly useful.

A. Limiting behavior of exact residual stress

The behavior in the limitD→0 can be verified numeri-
cally by using successively smaller temporal grid-filter
widths to process the numerical solutionu(t,x) of the VBE.
The exact residual stress~42! is evaluated to the accuracy of
the numerical scheme by solving, in addition to Eq.~40!, the
filter evolution equations@cf. Eq. ~10!#

]ū

]t
5

u2ū

D
, ~43a!

]uu

]t
5

uu2uu

D
~43b!

from initial conditions ū(0,x)5u(0,x) and uu(0,x)
5u2(0,x). Here, these equations~43! are advanced in time
using the standard fourth-order Adams–Moulton method.
~The fourth-order Runge–Kutta methodology used to ad-
vance the VBE would also be suitable for all the filter equa-
tions; however, following the Runge–Kutta update of the
solution by the fourth-order Adams–Moulton updates of the

filtered quantities has the algorithmic advantage of compart-
mentalizing the code.! While Eq. ~43! applies to the expo-
nential filter, an analogous set could be derived for the
Heaviside filter.

Figure 6 compares the exact, instantaneous residual
stress@tR# at t510 determined from Eqs.~40! and ~43! for
selected values of the filter-width ratior (5D/Dt). As ex-
pected, the amplitude envelope of the residual stress tends
toward zero asr decreases.

The behavior of the velocity and residual stress fields in
the limit of D→` can also be analyzed. As was shown in
Sec. III B, the limiting form of the residual stress@tR# ap-
proaches the long-time average stress fieldt. While this can
be shown by considering successively larger values of the
filter-width ratio r, it is first necessary to establish that the
solution of the forced, viscous Burger’s equation evolves to a
statistically steady~stationary! state. Thus, it is necessary to
verify the stationarity of the numerical solution, because the
equality of the residual stress and Reynolds stress in the
long-time limit is based on this assumption.@See Eqs.~33!
and ~34!.#

The long-time average and the spatial average of
the instantaneous velocity fieldu(t,x) are both equal to
unity. The fluctuating fieldu8(t,x) is extracted at each
time step simply by subtracting this mean value fromu(t,x).
To verify that the ~long-time! solution of the forced
viscous Burger’s equation is indeed stationary, a variety
of statistical quantities are analyzed. These include the
fluctuating intensityurms8 (5A^u82& t), energy dissipation rate
e5(2n^(du8/dx)2& t), skewness (5^u83& t /^u82& t

3/2),
and kurtosis (5^u84& t /^u82& t

2). These statistics were
obtained from windowed time averages of the time-
varying field u8(t,x)(5u(t,x)2^u(t,x)& t), with ^u(t,x)& t

5(1/D)* t2D
t u(t,x)dt. ~Such windowed averages are

equivalent toex post factofiltering with the Heaviside filter,
albeit for very largeD.! Figures 7, 8, and 9 present these
averages for window-width ratios ofr 5250, r 51000, and
r 54000, respectively. Slight variations in thex direction
have been eliminated by simply averaging over the domain
length. It appears that, after an initial transient period 0<t
<200, the flow is stationary on a time scale of approximately

FIG. 5. Instantaneous and causally filtered velocity fields att510 for filter-
width ratiosr 51, r 54, r 58, r 516, andr 532.

FIG. 6. Instantaneous residual stress@tR# at t510 for filter-width ratiosr
51, r 58, andr 532.
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D520 (r 54000). In addition, for sufficiently large temporal
windows D, it was found that the statistical quantities are
virtually independent ofx as well, suggesting that the solu-
tion is also statistically homogeneous.

Now that the stationarity of the solution of the forced
VBE has been established, it is possible to evaluate the effect
of large filter width on the residual stress. In Fig. 10 the

long-time averaged stresst is compared with the instanta-
neous residual stress@tR#(D) at t5240 for different values
of the filter-width ratior. The stresst is computed by aver-
aging over an interval of durationD520 during the period in
which the flow is essentially stationary (t5240– 260). As
expected, the residual stress@tR#, computed in real time us-
ing the exponential filter, appears to converge toward the

FIG. 7. Window-averaged turbulence
quantities forr 5250: ~a! root-mean-
square velocity urms8 , ~b! energy
dissipation ratee, ~c! skewness,~d!
kurtosis.

FIG. 8. Window-averaged turbulence
quantities forr 51000: ~a! root-mean-
square velocity urms8 , ~b! energy
dissipation ratee, ~c! skewness,~d!
kurtosis.
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value oft asD becomes large. Moreover, a further indication
of convergence is that the spatial averages of the residual
stress~that is, ^@tR#&x), provided in the legend of Fig. 10,
tend rapidly toward the value oft ~50.0185! as the filter-
width ratio r increases.

B. Residual stress for finite filter width

With the limiting behavior of the filter-widthD on @tR#
established for the forced VBE, it remains only to evaluate
the behavior of@tR# for finite filter width. As described pre-
viously, the exact residual stress is extracted from the solu-

tions of Eqs.~40! and ~43!. The modeled residual stress can
be obtained from these equations by further appending the
evolution equations

]u%

]t
5

ū2u%

D
, ~44a!

]ūū

]t
5

ūū2ūū

D
, ~44b!

and

] v̄
]t

5
v2 v̄

D
, ~45a!

]vv
]t

5
vv2vv

D
. ~45b!

Equation~44! is used in conjunction with the TSSM, subject
to the initial conditions u% (0,x)5u(0,x) and ūū(0,x)
5u2(0,x). For the TADM, both sets, Eqs.~44! and Eqs.~45!
are involved, subject to the additional initial conditions
v̄(0,x)5u(0,x) andvv(0,x)5u2(0,x). As before, these dif-
ferential filter equations are advanced by the Adams–
Moulton method.

In Fig. 11, the exact (@tR#) and modeled (@tR#mod) re-
sidual stresses are compared att520. Because the TSSM is
a degenerate case of the TADM, the following definition suf-
fices for both models:

@tR#mod5vv2 v̄ v̄, ~46!

wherev is an approximate deconvolution ofū. At this in-
stant, the flow statistics are still evolving in time, for in the

FIG. 9. Window-averaged turbulence
quantities forr 54000: ~a! root-mean-
square velocity urms8 , ~b! energy
dissipation ratee, ~c! skewness,~d!
kurtosis.

FIG. 10. Instantaneous residual stress@tR# at t5240 for selected values of
filter-width ratio r: ~—! long-time stresst. Moreover, spatial averages of
@tR#(5^@tR#&x) are 0.0161 (r 564), 0.0183 (r 5250), 0.0185 (r 51000),
and 0.0185 (r 54000), relative tot50.0185.
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finite-D case, there is no reason to presuppose stationarity. A
fairly dissipative filter of ratior 516 is used for thea priori
analysis. Note that for both the exact and modeled residual
stresses,@tR#.0 at all times. This realizability property20 is
a consequence of the positivity of the filter kernel established
in Eq. ~3!.

In order to quantify the fidelity of the models, a time-
dependent correlation coefficient,C, is computed for the
time interval of interest, 20<t<40. Specifically

C~@tR#,@tR#mod!

5
^@tR#@tR#mod&x2^@tR#&x^@tR#mod&x

@~^@tR#2&x2^@tR#&x
2!~^@tR#mod

2 &x2^@tR#mod&x
2!#1/2

,

~47!

where the spatial average over the 2p length in thex direc-
tion is ^u(t,x)&x5(1/2p)*0

2pu(t,x8)dx8. Figure 12 presents
the ~optimally phase-compensated! correlations over the in-
terval of interest. Both the TSSM and TADM correlate rela-
tively well with @tR#, with correlation coefficients on the
order of 0.8 and 0.9, respectively. Correlations, however, re-
flect distribution but not amplitude. In general, the TADM
has a higher correlation, and its amplitude tends to be more
nearly correct. That the TADM performs well with only first-

order deconvolution is surprising~as Stolz and Adams4 em-
ploy fifth order!. It is important to note that the classical
Smagorinsky model widely used in LES typically correlates
at less than 20% against exact residual stress.21,22

C. Limiting behavior of modeled residual stress

Finally, we consider the behavior of the models TSSM
@Eq. ~38!# and TADM @Eq. ~39!# in the limits D→0 and
D→`. By virtue of Eq. ~5!, both models vanish appropri-
ately, as does the exact residual stress@Eq. ~29!#, asD→0.

The situation forD→` is more subtle. The TSSM model
fails in the long-time limit in that, by Eq.~32!, the model
inappropriately turns off~vanishes!. An analog of this result
is that the spatial ADM model also turns off whenever a
spectral~sharp cut-off! filter is used, because, for such filters,
u% 5ū ~N. A. Adams, personal communication!. In general,
the difficulty with sharp cut-off filters, whether spatial or
temporal, is that they are noninvertible. In the long-time
limit, present temporal filters necessarily act spectrally in
that they preserve only the time average, in which case, in
Fourier space the transfer function is a delta function at fre-
quency zero~refer to Fig. 2!. In theory then, the TADM fails
also in the long-time limit because multiply filtered quanti-
ties simply replicate the long-time average. For practical ap-
plications of TLES, however, the filter width, however large,
would be finite. For any finiteD, an accurate deconvolution
can be obtained provided the deconvolution order is suffi-
ciently high. For example, Fig. 13 compares the quantitiesf̄
and v̄ for deconvolutions of differing orders. Here,f is the
same time series shown in Fig. 3,f̄ is its filtered counterpart
for relatively large filter-width ratior 564, andv̄ is the fil-
tered, deconvolved time series. Moreover, here and in the
subsequent discussion,p denotes the order of the deconvolu-
tion. Note thatr 564 results in the attenuation of nearly all
high-frequency content leaving principally only a fundamen-
tal frequency. Deconvolutions of orders 1, 4, and 7 are pre-
sented. Whereas, the deconvolutionsp51 andp54 are in
poor agreement withf̄ , for p57, v̄ agrees closely withf̄ .

FIG. 11. Instantaneous exact and modeled~TSSM, TADM! residual stresses
(@tR#) at t520.

FIG. 12. Optimally phase-compensated correlations between exact and
modeled residual stress as functions of time.

FIG. 13. Filtered deconvolutionsv̄ of selected orders compared with filtered
time-seriesf̄ . Signal f (t) is that of Fig. 3, andr 564.
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V. A POSTERIORI ANALYSIS

Section IV addressed the predictive capability of two
temporal residual-stress models~TSSM and TADM! by
means ofa priori analysis. It is well known that models may
perform well in a priori analyses yet fail in actual LES. In
this section, we lend further weight to the potential of TLES
by conductinga posteriorianalyses for the forced VBE@Eq.
~41!#.

The governing system for TLES consists of Eq.~41!,
with @tR# replaced by@tR#mod @Eq. ~46!#, coupled with filter
evolution Eqs.~44! and~45!. The filtered forcing functionF̄
is computed fromF via an evolution equation analogous to
Eq. ~44!. We consider only deconvolutions of orders zero and
unity, p50 andp51, respectively. The reader is reminded
that the TADM withp50 is equivalent to the TSSM.

The computational methodology for thea posteriori
analyses differs somewhat from that of thea priori analyses.
Specifically, all equations, including the filter evolution
equations, are advanced in time by RK4 methodology. More-
over, for computational efficiency, spatial derivatives are
computed pseudospectrally, rather than by the Galerkin
method exploited previously. For reasons to be discussed
shortly, no de-aliasing procedure is implemented.

In a posteriorianalyses, LES results are compared with
results obtained by filtering a reference DNS solutionex post
facto. Parameter values for the reference DNS and TLES
cases are presented in Table I below. The reference DNS case
is exactly that of Sec. IV, with the sole exception that the
number of time steps per fundamental forcing period has
been adjusted. For the DNS solution, both the spatial grid
resolution parametern and the number of time steps per fun-
damental forcing period are integer powers of two to facili-
tate analyses of spectra by Fourier transform methods. Spa-
tial resolution (n5256) was established so that the~relative!
amplitude of the highest wavenumber was approximately
machine epsilon for double precision (10215). The number
of time steps per fundamental period~256! was chosen to
ensure eight time steps per period at the highest forced har-
monic (kF532). Relative to the parameters of the reference
DNS, cases TLES4, TLES2, and TLES1 represent coarsen-
ings in both time and space by successive factors of 2. Thus,
the computational effort of TLES1 is roughly 1/64th that of
the reference DNS. The computational advantages, of course,
are expected to grow dramatically as the number of dimen-
sions increases. For a three-dimensional flow, the computa-
tional effort of a similarly coarsened TLES should be (1/64)2

times that of a fully resolved DNS.
The DNS solution is postprocessed by filtering with

filter-width ratio r 58, which, as will be shown, produces a
substantial effect on the frequency spectrum.~Refer to Figs.
2 and 5 for the effect of filtering withr 58.) Comparisons of
TLES4, TLES2, and TLES1 with the filtered DNS results are
meaningful only if the filter widthD5rDt is the same for all
cases. Accordingly,r 54, r 52, andr 51 for cases TLES4,
TLES2, and TLES1, respectively.

Figures 14 and 15 present the autocorrelation functions
and the spectra, respectively, of the DNS, the filtered DNS,
and the TLES cases. Spectra are computed as cosine trans-
forms of their respective autocovariance functionsR(s); that
is,

S~v!5
2

p E
0

`

R~s!cos~vs!ds, ~48!

where~as before! v is the circular frequency, and whereS is
used unconventionally for the frequency spectrum because of
the previous use ofE as expected value. The autocovariance
is computed only after the solution has attained stationarity;
that is fort.200. It was established previously that the flow
is homogeneous as well as stationary. Consequently, for pur-

TABLE I. Parameter values for TLESa posteriorianalysis cases and refer-
ence DNS case.

Case n Dt r D p

DNS 256 1/256 8 1/32 NA
TLES4.1 128 1/128 4 1/32 1
TLES4.0 128 1/128 4 1/32 0
TLES2 64 1/64 2 1/32 0
TLES1 32 1/32 1 1/32 0

FIG. 14. Autocorrelation functionsr(s) of TLES cases compared with
those of DNS and filtered DNS. For clarity, every other point shown. Note:
autocorrelation is nearly periodic with nominal period unity.

FIG. 15. Frequency spectra of TLES cases compared with that of DNS and
filtered DNS. For clarity, every other point shown. Spectra terminate at
frequenciesv/~2p! 128, 64, 32, and 16, for cases DNS~and filtered DNS!,
TLES4, TLES2, and TLES1, respectively.
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poses of computing the autocovariance, it suffices to record
the time trace of the solution at an arbitrary value ofx. If this
time series is denoted simply asu(t), then

R~s!5^u~ t !u~ t1s!& t , ~49!

where the time interval for the windowed average isD520.
Figure 14 compares the autocorrelation function of the

TLES cases with those of the DNS and filtered DNS. The
autocorrelation functionr(s) is the autocovariance normal-
ized by the variance, and the autocorrelation of a periodic
signal is itself periodic. Although the Burger’s ‘‘flow’’ is spa-
tially periodic and subject to periodic forcing, the output is
not quite periodic because of the quadratic nonlinearity of
the governing equation. Consequently, in all cases,R(s) is
subjected to a Parzen windowing function prior to the trans-
form by Eq.~48!.

Figure 15 compares the spectra of the TLES cases with
those of the DNS and filtered DNS. The spectra of the DNS
and filtered DNS differ dramatically. The TLES spectra
match the filtered DNS spectrum extremely well in all cases
except TLES1. Surprisingly, there is little difference in the
p50 andp51 deconvolutions of case TLES4, with the ex-
ception of minor differences at the higher frequencies.

To avoid mixing temporal and spatial filtering and cloud-
ing the effects of~purely! temporal filtering, no de-aliasing
procedures were implemented for any of the computations.
The DNS computation, being well resolved, needed no de-
aliasing. Cases TLES4 are also well resolved because high-
frequency content is strongly attenuated by the filter. Case
TLES2 is only marginally resolved. The spectrum for case
TLES1, which is severely under-resolved because if fails the
Nyquist criterion, agrees moderately well with that of the
filtered DNS; however, it tends to overshoot at all frequen-
cies, most likely a result of aliasing errors.

Finally, Fig. 16 compares window-averaged turbulence
statistics of selected TLES cases with those of the filtered
DNS. Specifically, Fig. 16, the TLES analog of Fig. 9, results
from averaging the turbulence quantities over a temporal
window of durationD520. The spectra of the filtered and
unfiltered DNS solutions~Fig. 15! differ dramatically, a dif-
ference reflected in the turbulence statistics of Figs. 16 and 9,
respectively.~For ease of comparison, the results of Fig. 9
are superimposed on Fig. 16.! However, Fig. 16 reveals ex-
cellent statistical agreement between cases TLES4 and
TLES2 and the filtered DNS. Because of the suspected alias-
ing errors, case TLES1 is not presented.

Although full verification of TLES awaits simulation of
three-dimensional flows at high Reynolds number, present
results with forced, viscous Burger’s ‘‘flow’’ are encouraging
and suggest that TLES should be further investigated.

VI. CONCLUSIONS

The behavior of the residual stress of the temporally fil-
tered Navier–Stokes~TFNS! equations was studied for a
class of differential, causal time-domain filters parametrized
by the temporal filter widthD. The effect of filter width on
the residual stress was examined for the asymptotic limits
D→0 andD→` and for the case of finite filter width. It was
shown analytically that, in the limitD→0, the residual stress
vanishes so that the Navier–Stokes equations are recovered
from the temporally filtered equations. Alternately, in the
limit D→`, for a statistically steady flow, the residual stress

FIG. 16. Window-averaged~D520!
turbulence quantities of selected TLES
cases compared with those of filtered
DNS: ~a! root-mean-square velocity
urms8 , ~b! energy dissipation ratee, ~c!
skewness,~d! kurtosis. For reference,
data extracted from Fig. 9~DNS! are
superimposed.
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asymptotically approaches the Reynolds stress, and the
Reynolds-averaged Navier–Stokes equations are recovered
from the temporally filtered equations. These asymptotic re-
sults were verified numerically through simulations of the
temporally filtered forced, viscous Burger’s equation. For the
case of finite filter widths, two residual-stress models were
considered that are temporal analogs of spatial SGS-stress
models. These were a temporal scale similarity model
~TSSM! and a temporal approximate deconvolution model
~TADM !. A priori anda posteriorianalyses of these models
were performed using highly accurate numerical solutions of
the filtered forced, viscous Burger’s equation. The models
were found to approximately replicate the exact residual
stress. Moreover, frequency spectra obtained from temporal
LES ~TLES! agreed closely with the appropriate spectrum
extracted from filtered DNS.

It has been shown analytically that the residual stress of
the TFNS equations is strongly dependent upon the temporal
filter width. This fact, coupled with computational results
from simulating the forced, viscous Burger’s equation over a
wide range of temporal filter widths, suggests that full simu-
lations of the TFNS equations should behave like DNS for
small temporal filter widths and like RANS for very large
ones. For finite filter widths the formulation describes a tem-
porally filtered LES or TLES. These results have provided a
bridging mechanism between solutions obtained directly
from the Navier–Stokes equations and those obtained from
the Reynolds-averaged Navier–Stokes equations. Such ideas
are being pursued further and will be the subject of a subse-
quent paper.
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