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Recent interest in the development of a unifying framework among direct numerical simulations,
large-eddy simulations, and statistically averaged formulations of the Navier—Stokes equations,
provides the motivation for the present paper. Toward that goal, the properties of the residual
(subgrid-scalg stress of theaemporallyfiltered Navier—Stokes equations are carefully examined.
This includes the frame-invariance properties of the filtered equations and the resulting residual
stress. Causal time-domain filters, parametrized by a temporal filter widit<G-, are considered.

For several reasons, the differential forms of such filters are preferred to their corresponding integral
forms; among these, storage requirements for differential forms are typically much less than for
integral forms and, for some filters, are independeni.ofhe behavior of the residual stress in the
limits of both vanishing and infinite filter widths is examined. It is shown analytically that, in the
limit A—0, the residual stress vanishes, in which case the Navier—Stokes equations are recovered
from the temporally filtered equations. Alternately, in the limitsoo, the residual stress is
equivalent to the long-time averaged stress, and the Reynolds-averaged Navier—Stokes equations
are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits
of filter width is further validated by numerical simulations of the temporally filtered forced, viscous
Burger’s equation. Finally, finite filter widths are also considered, and &gifiori anda posteriori
analyses of temporal similarity and temporal approximate deconvolution models of the residual
stress are conducted for the model problem. 2@3 American Institute of Physics.

[DOI: 10.1063/1.1582858

I. INTRODUCTION the computational requirements of fully resolved DNS are

to predict turbulent flows; however, due to the enormous_ . . :
) : . aminar-turbulent transition on flat plates, cylinders, and
computational expense required to extract a solution from

these equations for flows of engineering interest, it has bee ones. For _thege problems, DNS plays an mvalgable r_ole
oth in elucidating fundamental phenomena and in serving

necessary in most cases to revert to alternate formulation ; )
For current purposes, three computational approaches afe & yardstick to validate LES and RANS. _
considered: direct numerical simulatid®NS), large-eddy For LES, the separation of the field variables into re-
simulation (LES), and Reynolds-averaged Navier—Stokess‘)'Ve_d and anesolve(ctpatla} 'scales'ls eﬁected by filtering
(RANS) computations. These differ primarily in the level of the fields with a low-pass filter. Filtering the momentum
approximation required to achieve closure. equations generates residyalibgrid-scalgstresses that re-
By definition, DNS is the numerical solution of the duire closure either by modeling or approximation. Recent
Navier—Stokes equations without recourse to modeling. IRdvances such as dynamic modefiragnd deconvolution
concept, fluid motions are resolved down to the Kolmogorovmethod$* have made LES practical for application to cer-
length scale. Kolmogorov thednpredicts the ratio of the tain flows of engineering interest.
integral scale to the Kolmogorov scale to be on the order of ~Long-time averaging of the Navier—Stokes equations re-
Re¥* where Re is the Reynolds number based upon theults in the RANS equations for the time-independent mean
integral scale. In three spatial dimensions and time, the constate. RANS methodology is generally applied to statistically
putational requirements of DNS scale as’Reonsequently, steady flows. To close the system of equations, a model is
for the high Reynolds number flows of engineering interesheeded for the Reynolds-stress tensor. Although RANS is

1070-6631/2003/15(8)/2127/14/$20.00 2127 © 2003 American Institute of Physics
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computationally appealing, it places a heavy burden on th&he non-negativity and normalization constraints in E).
Reynolds-stress model, which must incorporate the effects amply that
all the unsteady motions upon the mean. )

While the formal linkage of the LES and RANS equa- tﬂrl 9(t)=0, )
tions has been well establish®dit is of interest to investi-
gate whether this linkage can be extended practically by deand suffice forG to approach a Dirac delta function as its
veloping filtering and averaging procedures that yieldparameten—O; that is,
mutually consistent solution fields. A possible unifying con- .
text for these methodologies is afforded by filter theory.  |im f(t;A)= lim f G(7—t;A)f(r)d7

However, the linkage between LES and RANS may be more a0 A—0 ==

natural within the context of time-domain filtering rather .

than the traditional spatial filtering commonly used in LES. :f S(r—t)f(r)dr="F(t). (5)
Accordingly, the present study focuses on the temporally fil- —o

tered Navier—StokesTFNS) equations and the resultant
residual-stress fields.

In Sec. Il causal time-domain filters are discussed, anif_
differential forms are derived for two candidate filters: an
exponential filter and a Heaviside filter. The TFNS equations exp(t/A)
are formulated in Sec. Ill. Characteristic properties of these ~ 9(t)=exp(t) = G(tA) = ——, (6)
equations are discussed, and ancillary issues related to com-
mutativity and frame-invariance are also addressed. Addiand the resulting integral operator in E@) is
tionally, analyses of the asymptotic behaviors of the residual

R . . . — 1t 7—1
stress for limiting values of filter width are presented. Fi-  f({;A)= _f exr<_)f(7-)d7-_ )
nally, temporal residual-stress models are proposed for the Ao A

case of finite filter width. In Sfac. 1V, the n.umencal solu'qon Using the shifted Heaviside functigd(t+ 1) asg(t) yields

the analytical results as well as to evaluate the proposed ter(:({{]e parametrized kem@(t; A) = (1/A)H(t+4) and the in-

poral residual-stress models lay priori analyses. Further tegral operator

validation of the proposed residual-stress models ippste- — 1 (t

riori analyses is provided in Sec. V. Concluding remarks are  f(t;A)= N L,Af(T)dT' (8)
offered in Sec. VI.

Two examples of simple, useful filters are obtained by use of
n exponential function and a Heaviside function as kernels.
or the exponential function, the kernel is

The effect of a filter is most apparent from its transfer
Il. PROPERTIES OF TIME-DOMAIN FILTERS function H(Q2"), which quantifies its amplitude and phase
effects in Fourier space as a function of dimensionless fre-
Time-domain filters are classified aausalor acausaf  quencyQ’=wA. Specifically, for a causal time-domain filter
depending upon whether they are applicable to real-tinge or o
_posterlo_rldata processing, respe_ct|vely. The mtere_st h_ere _Iles H(Q')= J' G(7A)exptwr)dT, 9)
in real-time applications for which only causal filtering is —
appropriate; accordingly, the focus in this study is restricted

to causal filters. While aspects of time-domain filters haveWhere“’ is the circular frequency, and= y—1. The order of

been discussed previously in this cont&ittis worthwhile to a filter is associated with the flatness of the modulus of its
reiterate some fundamental relationships for compIeteness.tr"’mS_fer function near the origiff)’ =0). Because the expo-
nential and Heaviside filters have zero slope but nonvanish-

Let f(t) be a continuous function of time A causal . d derivati t th ain. both lassified
linear filter is readily constructed by the integral operator Ing second derivatives at the origin, both are classilied as
first-order filters. However, as Fig. 1 shows, their transfer
— o[t ) functions differ significantly away from the origin.
f(t’A)_f wG(T tA)i(n)dr, @ A drawback of the integral formulations just presented is

h . ed filter k | and th A the need to retain the long-time history of the solution field.
whereG is a parametrized filter kernel, and the parameier However, by considering instead differential forms of the

is the filter width.(The convention of using semicolons to filtler operators, storage requirements are reduced signifi-

separate parameters from independent variables in argumegii subject to the intrinsic storage needs of the numerical
lists is adopted hereln general, admissible kernels must ;. = 4 ancement scheme itséfbr example, low-storage

satisfy the following property: Runge—Kutta By differentiating Eqs(7) and(8), the differ-
1 /[t ential forms of the exponential and Heaviside filters are
G(t;A)EKg NE (2 given by
whereg is any integrable function such that J— f(t —f_t;A
g is any integ OTta)= Q) A( ) 10

0
9(t)=0, fﬁwg(t)dtzl, 9(0)=1. ) and
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FIG. 1. Transfer functions of causal exponential and Heaviside filters.
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FIG. 3. Differentially filtered time serie§(t).

disallowed because it results in unacceptable aliasing error.
Note also that =0 yieldsH({);0)=1, which eliminates the
filter.

In order to illustrate the discrete differential filtering pro-
cess, a z-periodic time series is processed by the exponen-

When causal filtering is applied to a temporally dis-tjg| differential filter given in Eq.(10). The time series is

cretized problem with a time increment At, the action of

generated from a—3/2 power-law decay in Fourier fre-

the filter is naturally parametrized by the filter-width ratio  guency space, and the phases are assigned randomly. The

defined as

r

A

=Xt

12

continuous signal is then sampled at a rate of 512 per period
and replicated for three periods. The filtered time sefies
then generated by solving E€LO) from the initial condition
f(0;A)=1f(0). There are many appropriate humerical inte-

For the exponential and Heaviside filters, respectively, thgyration schemes. Because the right-hand side of the differen-
parametrized transfer functions are

H(Q;r)=

H(Q;r) =

1+uaQ’

1—exp(—ur Q)

(13a

(13b

tial form of a linear filter is itself linear, fully implicit
Adams—Moulton methods are particularly attractive because
of their accuracy and efficiency. Here, standard fourth-order
Adams—Moulton methodology is used. The method is started
with initial steps of orders one, two, and three, respectively.
The filter-width ratio, r, is the only parameter of the
differential filter. In general, the larger the value fthe

WhergﬂzwAt. Figure 2 ,ShO\,NS the modulus of the transfermore dissipative the filter(In this context, a “dissipative”
function of the exponential filter for selected values of thelow-pass filter is one with significant and broad-band attenu-

filter-width ratio. Note tha€)= corresponds to a sampling
rate at the Nyquist frequency, and that filtering(at-7 is

[H(©)|

%85

filter-width ratio.

Q/n
FIG. 2. Transfer function of parametrized exponential filter as a function oftioNs using Eq(1) leads to the following form of the TFNS

ation of high-frequency Fourier harmonic3he method re-
mains viable for all values of filter-width ratio €0r). For

r~0, the evolution equation becomes stiff, and small time
steps are necessary. Figure 3 compares the filtered time series
with the unfiltered signal for selected values of the filter-
width ratior. As r increases, the output time series becomes
smoother and its amplitude diminishes due to the removal of
energy at the higher frequencies. As is typical for causal
filters, high levels of numerical dissipation generate signifi-
cant phase lag in the output relative to the input. Figure 4
compares the input signal with the original output signal and
with an output that is phase compensatedrhiyme steps.

The phase-compensated signal is an excellent representation
of the input, minus its high-frequency components.

lll. TEMPORALLY FILTERED NAVIER-STOKES
EQUATIONS

Temporal, causal filtering of the Navier—Stokes equa-

equations:
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2.0 — Examining the transformation properties of the Navier—
— i) A Stokes equations even under the Euclidean group is rela-

1.5~ M M R ity - tively straightforward and the various forms of the equations
T Hwray | in the noninertial frames are well known. However, when

i temporal filtering of the variables as well as the governing
] equations is involved, care must be exercised in order to
- obtain the proper relations and interpretation of the results.
This is due to the fact that the direction cosin@g of the

1.0

1.1
o
o

0.0 i transformation are time dependent and as such become nec-
essarily coupled to and inseparable from the flow variables
05 _ under the filtering process.
| In order to properly interpret the results of the transfor-
-1.05 L mations, it is necessary to identify the frame of reference that

20 25 serves as the base Eulerian system, that is, the frame in
which the observer is fixed. Consider the rectangular coordi-
FIG. 4. Original, exponentially filtered, and phase-compensated time serieﬁatesxi* of a point in a frame of reference in arbitrary time-
f() for r=32. dependent motior{rotation and translationrelative to an
inertial frame with corresponding coordinates In the first
case, the observer is fixed in the inertial frame. Under the

3UJ. Euclidean group, the spatial coordinates and corresponding
EvalY (14 velocity field then transform as
j
dui a(uu)  dp  Pui dlTaly Xi (%)= Qy[x; + by, (173
R il v N
at X axi  OXjoXj  IX . L :
Ui (U, %) = Qi [ X + by 1+ Q5[ uj + by ], (17b

whereu; is the velocity,p is the pressure, andis the kine-
matic viscosity. An overbar denotes a temporal grid—filterethereQ:Q(t) is a time-dependent proper orthogonal tensor
quantity, and[ 7r];; represents the temporal residual-streSS(QQT:L detQ=-+1,1 is the identity tensor (') denotes the
tensor defined as time derivative, and; =b(t) is any time-dependent vector
T — with t* =t+1t, (tg is an arbitrary constant time shiftThe
[7eliy =t =~ (16) temporal filte(; \fvi(()jths in the respyective frames are unaffected
Provided that filtering and differentiation operations com-(A*=A) by such transformations and do not need to be con-
mute, the TENS equations afermally identical to the spa-  sidered explicitly in the remainder of the frame-invariance
tially filtered Navier—Stokes equations. As pointed out pre-discussion. In this case, to an observer in the inertial frame,
viously by Pruetf, commutativity is natural for temporal the spatial coordinates in the noninertial frame vary with
filters but remains problematic for spatial orf@stItis now  time: whereas, the spatial coordinates in the inertial Eulerian
recognize®?*that this formal equivalence doemtimply  frame are fixed.
quantitative equivalence of the residual-stress fields. In gen- |n the second case, the observer is fixed in the noniner-
eral, for spatialor temporal grid filters, the residual stress tial frame. Under the Euclidean group, the spatial coordi-

depends strongly upon the filter, particularly upon its filternates and corresponding velocity field then transform as
width and order property, which influence both the magni-

tude and the distribution of the residual stress. The implica- xj(t)=Qijxi* —bj, (183
tion of this growing awareness is that the residual-stress _ _
model cannot be independent of the choice of the filter. To  u;(t,x,) = Q;;uf +Q;;x* —b;. (18b

make explicit its formal dependence upon the specific tem-

poral filter, the residual stress is denoted[lay];;(A) where  In this case, to an observer in the noninertial frame, the spa-

appropriate. tial coordinates in the inertial frame vary with time; whereas,
Before examining the effect of the filter width on the the spatial coordinates in the noninertial Eulerian frame are

behavior of the residual stress, it is useful to establish soméxed. With this background, the frame-invariant questions

of the frame-invariance properties of both the TFNS equapertinent to the properties of the filtered and residual vari-

tions and the temporal residual str¢sg];; . ables as well as the TFNS equations in the noninertial frame
x* can be addressed.
A. Frame-invariance properties For the case where the inertial frame is the Eulerian

It has been shown previoulghat the TENS equations frame_, the transfprmatmn prqpertles of the fllte_red spatial
coordinates and filtered velocity fields can be written as

are frame invariant under the Galilean group of transforma-
tions. In order to further explore the range of applicability as  — — —

well as limits of the TFNS formulation, it is useful to exam- X7 = Qipx; Qi (199
ine the frame-invariance properties of the TENS under the e .
more general Euclidean group of transformations. ui (1% ,xg ) = Qi [+ b; 1+ Q5[ uj+ by ], (190
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wherex; =x; fo'r thg (inertial) !Eulerian system. For the case P* =p* + 30,0 QX5 x5 — anb; Xt (22b
where the noninertial frame is the Eulerian frame, the trans- _
formation properties of the filtered spatial coordinates andvhere the rotation rate tenso; represents the angular ve-

filtered velocity fields can be written as locity of the noninertial frame relative to the inertial frame
R _ and is defined by
X =Qixi —bj, (203 .
L Qi=Qi1Qu- (23
Uj= Qjj uy’ +Qini* —bj, (20b) Since Bn"is frame invariant, thgobjective transformation

Whereﬁz x{ for the (noninertia) Eulerian system. bk =anbn_has peen used i_n qu_Zb)' [Note that Eq.(22)
It is easily seen from Eq€19b and (20 that the fil- can be derived directly starting with the transformation prop-

tered velocity fields are not frame invariant under a Euclig-erties described in E¢18).] The question now is: For an

ean transformation—a result consistent with that obtained fopbserver fixed in the noninertial Eulerian fr_ame, what form
the (spatial filtered LES approach® However, due to the do the TFENS equations take under the Euclidean transforma-

inseparable coupling of the direction cosir@g with the tion group? These equations can be obtained by first taking

velocity field, the filtered velocity field does not transform in the material derivative of E|17h) and then filtering
the same manner as the unfiltered velocity field—aresultthat 5 _ ] Du. _
contrasts with that obtained for thispatial filtered LES # =—QuQi Xk —2Qy Qi Uy + QijD—t'Jr Qijb;
approach? For the subset group of Galilean transformations,
where Q;; is time independent and;=—V;t (V; are con-

. Du ———
stant components of a translational velocity imposed on the =(Qi— Q) Q) xg +2QUi +Qij—'+ Qijb;,
R 16 : o ) Dt
noninertial framg=° the filtered velocity field transforms in
the same way as the unfiltered velocity—a result consistent (249

with the(spatlal f|_|tere()| LE.S approacti/ but in contrast to a where the Navier—Stokes equations in the inertial frame are
result arrived at in a previous studly. used to obtain

The next question to address is the transformation prop- o
erties of the residual fields. These fields are the differences Duy; ap 22u, (;p_* o2u¥
between the instantaneous and filtered fields. For the case Qijﬁ: _Qij&_+ vQij =~

K . . . Xj (9Xk(9Xk
where the Eulerian frame is the inertial frame, E4Sb and

14 .
* * *

(19b) yield (240
- — Introducing the residual stress into the formulation, €43
U =uf —uf =[ QiU — QiU ] + [ Qi — Qi Xk can then be written in the form
+[(Qikbi) = (Qibx. (218 uf —auf
and for the case where the Eulerian frame is the noninertiaﬁt* “ Xy
frame, Egqs(18b) and (20b) yield — —
as{18b) (200 B aP* N é’zui* 90 *+Q— . o TRk
Uj=U;— U =[ QUi — QiyUi]] T oo TR T T
+[ij_ij]X: _[bj_bj]- (21b (253

A comparison of Eqs(213 and(21b) shows that the residual where

velocity field is not frame-invariant under the Euclidean Ox ok L 10 (0 uk ok ek ok

group—a result that contrasts with that obtained for(8pa- P =P 2 hinXn Xic ~bicxic (25D

tial filtered) LES approach® However, as will be shown in and

the following, for the Galilean group the residual velocity I

field is frame-invariant. [TRIk=Uf U —u® ug. (250
The final transformation property under the Euclidean

group to be addressed is the form of the TFNS equations i

the noninertial frame. As is well known, the Navier—Stokes

equations are not frame-invariant under the Euclidean groug

since in a noninertial frame they take the form

is clear from a comparison between E(&2) and(25) that
the TENS do not in general retain the same form as the
avier—Stokes equations in the noninertial frame under the
uclidean group—a result that contrasts with that obtained
for the (spatial filteredd LES approach® The differences lie

Du¥  Ju¥ . ou* JP* o2u¥ . in the form of the quiolis and centrjfugal acceleratioq tgrms,
Dt* m_*_l'uk P == P +V(9x* P +2Q;uy as weII_ as_the rotatlon:_all gc_celeratlon term. The Conphs ac-
k i k %k celeration is the most significantly affected due to the insepa-

+QikX: , (229 rable coupling with the velocity field brought about by the

temporal filtering process. For the important case of constant
with a modified pressurB* (that includes both the centrifu- rotation rate();; and nonaccelerating translational frames,
gal acceleration and the translational acceleratgpven by  Eg. (25 can be written in the form
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o?l,li* —*o'?ul* IP* (?zui* "m[TR]ij(t,X;A):"m(Uin_Uin):(Uin_Uin):O.
e k(g*z_ _*+V T » A—0 A—0
Xy X; X IXy (29)
— IRk The vanishing of the temporal residual stress, coupled with
+2Q U — P (268 the replacement of the other filtered quantities by their unfil-
K tered counterparts, leads to the recovery of the Navier—
where Stokes equations from the TENS equations in the |iwit0.
o The other limit of interest isA—. However, before
P* =p* + 30,4 Q x5 X} . (26  examining the behavior of the residual stress in this limit, it

_ _ _ is useful to examine some characteristics of the filtered ve-
In this case, the TENS equations retain the same form as thecity field itself. It follows from the differential forms of

Navier—Stokes equations in the noninertial frame. either the exponential or Heaviside differential filters given
As the TFNS equations show, the residual stfesg, in Eq. (10) or (11) that

given in Eq.(25¢ is defined in the same manner as its iner- o
tial frame counterpart. Nevertheless, models developed for im ﬁ(t :A)=0 (30)
the residual stress field will suffer from the same deficiencies " gt ~ '™ '
as the residual velocity field under the Euclidean group. The
reason, stated previously, is the unavoidable coupling bewhere bothu; and u; are assumed bounded. The above-
tween the time-dependent relative motion of the frames andhentioned condition establishes tha(t,x;=) is actually
the time-dependent flow field. From a modeling standpointjindependent of time [In fact, for Eq.(30) to hold, it suffices
models for[ 7z]}}. developed for inertial frames may not suf- thatu; is bounded and thag’(t)| is integrable on(—,0].]
fice in the noninertial frames and will have to be modified toThus, Eq.(30) applies to a wide class of filters. For the
account for the noninertial effects. This is neither surprisingcausal temporal filter defined in E¢l) with the Heaviside
nor uncommon, because turbulent flow models routinely ackernel (for conveniencg u;(t,x;>) can be written as
count for such rotational effects.

The analysis to this point has been rather general and |, (6 A) =0, (0x;0) = lim EJO ui(7,x)dr.
necessarily detailed. To bring the section to a close, it is ... = e A N B
worthwhile to limit the discussion to the more familiar Gal- (31
ilean group of transformations where the frame-invariance ) ) ) )
properties are, in general, consistent with spatial filtered LES-Auation(31) holds for any filter for whichH(0)=1, which

results. Inspection of Eqg17b) and (21) shows that under 1S typical of low-pass filters. The right-hand side of E8]1)
the Galilean group @;; and b,: ~V; constant, both the simply defines the long-time average of the variaig,x),

filtered velocity and unresolved velocity consistently trans—Wh'Ch’ for a statl_onary Process, 1S equalent_to the ensemble
average according to the ergodic hypothesis. That is, for a

form and are given by stationary flow

uf =Q;lu+Vyl, T =Qy;. (27) U;(0x;%0) =E{u;(t,x)}, (32

Thus, the unresolved velocity field as well as the filtered \\here E{} denotes the expected valger ensemble aver-
unresolved velocity field are frame indifferent under the Gal-3q¢. However, Eq(30) has shown that; (t,x;=) is constant
ilean group. With these properties for both the filtered andyjth respect to time so that

unresolved velocity fields, it can also be shown that the re-

sidual stres$ rg] is now frame invariant, so that U;(t,x;2) =u;(0x;%) =E{u;(t,x)}=U;(x), (33
[ =]} = QuQjil 7rlii - (28 and

The Galilean transformation properties established for the . _f?—_ 9 _ _

temporal filtering process are similar to those established for A“Twat Ui (t.x300) = at E{ui(tx)}=0. (34)

the spatial filtering process. This group invariance of the
TFNS equations and the residual stress given by (8. In the current time-filtered approach, E®3) provides the
shows that the evolution of the filtered scales of motion is thdink between the resolved motions of the variabjé,x) and
same. In addition, this result will be used in Sec. IlI B to the ensemble meadd;(x). Because the variablg(t,x) can
further validate the equivalence of the residual stress and tHee partitioned either into a sum of resolvag(t,x;=) and
long-time averaged stress in the limit of infinite filter width. temporally unresolved motiong(t,x), or into a sum of time
mean U;(x) and fluctuatingu; (t,x) quantities, it follows
B. Limiting behaviors from Eq. (33) that

Of interest in this section is the effect of filter widthon Ti(t,x;0)=u! (t,%). (35)
the residual stressrg];; . It is easily shown that thrg];;
vanishes in the limiA—0. In this limit, the kernel function In addition to the equality between the resolved and mean
reduces to a Dirac delta functigeee Eq.(5)] so that fields in the limit, Eq.(35) shows the linkage between the
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temporally unresolved and fluctuating motions. With thes§ 4],,,,for both models. It should be noted that the temporal
results, it is now possible to examine the limiting behavior ofresidual-stress models given in E¢38) and(39) are frame-

the residual stress. indifferent under Galilean transformations; a property that
By the linearity of the filter operator, the residual stressthe exact residual stress has been shown in(Eg).to have.
defined in Eq(16) can be written as In Sec. IV, ana priori analysis of the predictive capabil-

lim [ ey (A) = lim [(?UPLE_TJPLE_U#UTJJ)—TUJ], ity of these two residual-stress models will be performed.

A—oo A—o
36
(36 IV. FORCED VISCOUS BURGER'’S EQUATION
where the instantaneous velocity field has been partitioned o _ _ _
into resolved and unresolved partS. Because B@ and While it is desirable and U|t|mate|y necessary to validate

(33) establish an equality between the resolved and ensembiB€ analytical results previously established in simulations of
mean fields, and the residual and fluctuating fields, respedhe full TENS equations, the wide range of parameter values

tively, Eq. (36) can be simplified to considered here renders such analyses cost prohibitive. How-
ever, it is possible to illustrate the dependence of the residual
lim [ 7&];;(A) = E{uj E{u;} + u/ E{u;} +uf uj} stress upon the temporal filter width, in general, and the
Ao asymptotic behaviors discussed previously, in particular, by
=E{uju/}=m;. (37)  simulations of a spatially one-dimensional model problem.

] . . To this end, consider the forced, viscous Burger’s equation
That is, for a stationary flow the residual strefs(;) as-  (vBE), written in the form

ymptotically approaches the Reynolds stresg) (as A—ce.

It is well knownt® that the long-time averaged stress is Gal-  du 1 d(u?) d%u

ilean invariant. As was shown in ER8), the residual stress T2 Tk VﬁjL F(tx) (0<x<2m), (40)
also retains this feature, which further validates the equiva-

lence of the two stress fields established in &Y). with u(t,x) a velocity, F(t,x) an imposed forcing function,
andv a viscosity. The initial condition isa(0,x) = 1. Without

C. Finite filter width forcing, the initial condition results in a velocity field that is
o i ) constant for all time and space. Moreover, any perturbations
For finite filter width, the residual stress represents the, i, field decay toward zero, so that constant “stirring” is
dynamlcs of a _broad spectr_al range of motions. The TFN equired to maintain high-intensity fluctuatiotsThis equa-
equations provide a governing set of equations suitable fofqn can be solved accurately by a Galerkin Fourier spectral
time-filtered LEs (or TLES), for which (accuratemodeling  method in space coupled with classical fourth-order Runge—
of [7g];j is required for closure. , Kutta (RK4) time advancement. A Fouri@nsatzs assumed
The temporal variants of two well-known residual-stressy, -, and substituted into the governing equation. This results

modeI% for[ 7z];; are considered: Bardina's scale-similarity j, 4 system of coupled ordinary differential equations for the
model® (SSM); and the approximate deconvolution model complex Fourier coefficientd),, k=—n/2,..—1,0+1...

(ADM) of Stolz and Adam$.The time-filtered counterparts /o (Due to conjugate symmetry, only/2+1 non-
of these models are referred to as the temporal scalgseqative modes are solved for explicitifhe equations are
similarity model(TSSM) and the temporal approximate de- o njeqd through their nonlinear terms, which are evaluated

convolution mode(TADM), respectively. _ exactly in Fourier space by Cauchy products. Hence, explicit
Consider first a TSSM that is formally equivalent to the de-aliasing is unnecessary.

Bardina modet?

For this forced casen= 256, and each Fourier mode in
[TR]iﬁTUj— Gi'jj (TSSM). (38 the _band Ek=kg is independently subjectgd to periodic
forcing F(t) such thatF(t) = A, explwt) with real fre-
As in the Bardina model, the san@@mporal filter width is  quency w,=kw. The band limitke=32, the fundamental
used for the primary and secondaftgst filters. Next, the  frequencyw=1, and the amplitudé= 0.4 (the same for all
TADM considered is formally equivalent to the second of thEmode$ are input parameters, and the time increment is 0.005
ADM models presented by Stolz and Adafns, throughout. The complex phaseg=exp(J) are assigned
i initially by random numbersy, uniformly distributed on
[7elij=vivj—vivj  (TADM), (39 [0,27]. Thereafter, they remain fixed. As will be shown, after
wherev; is an approximate deconvolution af; that is,v; a long-time evolution, a statistically steady flow results. Be-
approximatesu; based upon approximately defilteriide-  cause, at small, the viscous Burger’s equation admits solu-
convolving u; . Following Stolz and Adams, the zeroth- and tions with steep shock fronts, only a moderately large value
first-order deconvolutions ofl; yield v;j=u; and v;=2u;  of v is practical. For the value=1/300 and forcing distri-
—U;, respectively. Higher-ordeland more accuratelecon-  bution, the flow is highly resolved in both time and space,
volutions are possible. Note that the TADMADM) general-  with Fourier amplitudes at the highest wavenumbers of less
izes the TSSMSSM), because the zeroth-order deconvolu-than 10 1°.
tion is the TSSM(Appropriately, Stolz and Adarfisefer to Causally filtering the forced VBE results in the follow-
the second of their ADM models as the generalized SSMng equation, which can be considered as a one-dimensional
model) Consequently, we use the single nomenclatureanalog of the TFNS equation given in E45):
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FIG. 5. Instantaneous and causally filtered velocity fields=atO0 for filter-
width ratiosr=1,r=4,r=8, r=16, andr =32.

aU+ 1d(uu) &2U+Et 1 d[ 7r]
A2 Tk Ve TR
(0<x<2m). (41)
Filtering generates a residual stress given by
[ 7r]=uu—uu. (42)

In Fig. 5, the instantaneous unfiltered velocity field, obtaineomW
from the solution of Eq(40) att=10 (At=0.005), is com-

pared with the filtered field, which satisfies E@1), for
selected values of the filter-width ratio Clearly, filtering in

time to remove high frequencies effects the removal of en

ergy at high wavenumbers as well.

As implied in Sec. Il B, the behaviors of the residual

stress for limiting values of the temporal filter width are

key results of the temporally filtered methodology being
studied. To illustrate these predicted behaviors in the limit
A—0 andA—», the model problem is particularly useful.

A. Limiting behavior of exact residual stress

The behavior in the limiA—0 can be verified numeri-

S
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FIG. 6. Instantaneous residual str¢sg] at t=10 for filter-width ratiosr
=1,r=8, andr=32.

filtered quantities has the algorithmic advantage of compart-
mentalizing the code.While Eq. (43) applies to the expo-
nential filter, an analogous set could be derived for the
Heaviside filter.

Figure 6 compares the exact, instantaneous residual
stresq 7] att=10 determined from Eqg40) and (43) for
selected values of the filter-width ratiq=A/At). As ex-
pected, the amplitude envelope of the residual stress tends
ard zero as decreases.

The behavior of the velocity and residual stress fields in
the limit of A—« can also be analyzed. As was shown in
Sec. IlI B, the limiting form of the residual stregsg] ap-
proaches the long-time average stress field/hile this can

be shown by considering successively larger values of the
filter-width ratior, it is first necessary to establish that the
solution of the forced, viscous Burger’s equation evolves to a
statistically steadystationary state. Thus, it is necessary to
verify the stationarity of the numerical solution, because the
equality of the residual stress and Reynolds stress in the
long-time limit is based on this assumptidiiee Eqs(33)

and (34).]

The long-time average and the spatial average of
the instantaneous velocity field(t,x) are both equal to

cally by using successively smaller temporal grid-filterunity. The fluctuating fieldu’(t,x) is extracted at each

widths to process the numerical solutiaft,x) of the VBE.

The exact residual stre$42) is evaluated to the accuracy of

the numerical scheme by solving, in addition to E4), the
filter evolution equationgcf. Eq. (10)]

(?U_ u—u 23
E - A 1] ( a
Juu  uu—uu

= (43b)

ot A

from initial conditions u(0x)=u(0x) and uu(0x)

time step simply by subtracting this mean value fro(h,x).

To verify that the (long-time@ solution of the forced
viscous Burger’'s equation is indeed stationary, a variety
of statistical quantities are analyzed. These include the
fluctuating intensityu/.{ = V(u'?),), energy dissipation rate
e=(2v((du’/dx)?),), skewness £(u’3)/(u'?¥?,
and kurtosis €(u’'*),/(u'??). These statistics were
obtained from windowed time averages of the time-
varying field u’ (t,x)(=u(t,x) —(u(t,x))y), with {u(t,x)),
=(1/A)f{_Au(r,x)dr. (Such windowed averages are
equivalent toex post factdiltering with the Heaviside filter,

=u?(0x). Here, these equationd3) are advanced in time albeit for very largeA.) Figures 7, 8, and 9 present these
using the standard fourth-order Adams—Moulton methodaverages for window-width ratios af=250, r=1000, and
(The fourth-order Runge—Kutta methodology used to ad+=4000, respectively. Slight variations in thedirection
vance the VBE would also be suitable for all the filter equa-have been eliminated by simply averaging over the domain
tions; however, following the Runge—Kutta update of thelength. It appears that, after an initial transient pericdtO
solution by the fourth-order Adams—Moulton updates of the< 200, the flow is stationary on a time scale of approximately
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FIG. 7. Window-averaged turbulence
quantities forr =250: (a) root-mean-
square velocity U/, (b) energy
dissipation ratee, (c) skewness,(d)
kurtosis.

A=20 (r=4000). In addition, for sufficiently large temporal long-time averaged stregsis compared with the instanta-

windows A, it was found that the statistical quantities are neous residual stre$sr](A) at t=240 for different values

virtually independent ok as well, suggesting that the solu- of the filter-width ratior. The stress is computed by aver-

tion is also statistically homogeneous.
Now that the stationarity of the solution of the forced which the flow is essentially stationary=240—260). As

VBE has been established, it is possible to evaluate the effeeixpected, the residual strgss;], computed in real time us-

of large filter width on the residual stress. In Fig. 10 theing the exponential filter, appears to converge toward the

025 , , . 0.006 . . . ’
(a) (b)
0.20F 4 o005 -
o w
0.151- “~ 0.004 b
1 e 1 n I %1 L 1
0105 00 160 200 20 0.003, %0 700 180 200 250
.10 T T . . 2.0 T T T T
(c) (d)
0.05} 1 18t -
2 e |
[
§ 0.00}- i é 1.0 -Mm’“‘““ J
& X
008} 1 os} _
_0.1c I I [} 1 i L 1
o 00 10 20 2 005 50 00 150 200 250

aging over an interval of duratioh=20 during the period in

FIG. 8. Window-averaged turbulence
guantities forr =1000: (a) root-mean-
square velocity u/,s, (b) energy
dissipation ratee, (c) skewness,(d)
kurtosis.
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value of rasA becomes large. Moreover, a further indication tions of Egs.(40) and(43). The modeled residual stress can
of convergence is that the spatial averages of the residudle obtained from these equations by further appending the
stress(that is, ([ 7r])x), provided in the legend of Fig. 10, evolution equations

tend rapidly toward the value of (=0.0185 as the filter- -

width ratior increases. ou_u-u (449
A t

at

B. Residual stress for finite filter width e
Juu uu—uu

With the limiting behavior of the filter-widtiA on [ 7] i A (44D
established for the forced VBE, it remains only to evaluate
the behavior of 7] for finite filter width. As described pre- and
viously, the exact residual stress is extracted from the solu-

é’v__ v—v 45
0030————————T————T T 71 1 c?v_v — M (45b)
I at A
0.025 ]

Equation(44) is used in conjunction with the TSSM, subject
to the initial conditions G(0x)=u(0x) and uu(0x)

0.020 7] =u?(0x). For the TADM, both sets, Eq§44) and Eqs(45)
?0015;\ B are involved, subject to the additional initial conditions
e " v(0X)=u(0x) andvv(0x)=u?(0x). As before, these dif-

ferential filter equations are advanced by the Adams-—
ootk e =64
________ =250 | Moulton method.

0.0051- o ::lggg ] In Fig. 11, the exact[(rg]) and modeled[(7g]mod re-

) sidual stresses are compared at20. Because the TSSM is

oooo- e a degenerate case of the TADM, the following definition suf-

0 1 2 8 4 5 6 7 fices for both models:
FIG. 10. Instantaneous residual strésg] att=240 for selected values of [ TRImoa=vV — VWV, (46)

filter-width ratio r: (—) long-time stressr. Moreover, spatial averages of . . . — L
[7e](=([7]),) are 0.0161 (=64), 0.0183 (=250), 0.0185 (=1000), Wherev is an approximate deconvolution af At this in-

and 0.0185 (=4000), relative tor=0.0185. stant, the flow statistics are still evolving in time, for in the
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FIG. 11. Instantaneous exact and moddE8SM, TADM) residual stresses

FIG. 13. Filtered deconvolutions of selected orders compared with filtered
([7g]) att=20.

time-seriesf. Signalf(t) is that of Fig. 3, and =64.

finite-A case, there is no reason to presuppose stationarity. A
fairly dissipative filter of ratior =16 is used for the priori

order deconvolution is surprisings Stolz and Adarisem-
analysis. Note that for both the exact and modeled residug|oy fifth ordep. It is important to note that the classical
stresses] rg]>0 at all times. This realizability propeyis  smagorinsky model widely used in LES typically correlates
a consequence of the positivity of the filter kernel establishedy ess than 20% against exact residual stte&s.
in Eq. (3).
dependent correlation coefficient, is computed for the
time interval of interest, 28t<40. Specifically

C([7r].[ TRImod)

In order to quantify the fidelity of the models, a time- Limiting behavior of modeled residual stress

Finally, we consider the behavior of the models TSSM
[Eqg. (38)] and TADM [Eq. (39)] in the limits A—0 and
A—oo, By virtue of Eq.(5), both models vanish appropri-
ately, as does the exact residual stigss. (29)], asA—0.

The situation forA—x is more subtle. The TSSM model
fails in the long-time limit in that, by Eq(32), the model
inappropriately turns offvanishes An analog of this result

is that the spatial ADM model also turns off whenever a
tion is(u(t,x))xz(1/2w)fS”u(t,x’)dx’. Figure 12 presents s;pectral(sharp cut-off filter is used, because, for such filters,

the (optimally phase-compensajedorrelations over the in- U=U (N. A. Adams, personal communicatjorin general,
terval of interest. Both the TSSM and TADM correlate rela- the difficulty with sharp cut-off filters, whether spatial or
tively well with [g], with correlation coefficients on the temporal, is that they are noninvertible. In the long-time
order of 0.8 and 0.9, respectively. Correlations, however, relimit, present temporal filters necessarily act spectrally in
flect distribution but not amplitude. In general, the TADM that they preserve only the time average, in which case, in
has a higher correlation, and its amplitude tends to be morEourier space the transfer function is a delta function at fre-
nearly correct. That the TADM performs well with only first- quency zerdrefer to Fig. 2. In theory then, the TADM fails

_ <[TR][TR]m0d>x_<[TR]>X<[TR]m0d>x
LRI = ([ m=D)2) ([ 71z x— ([ TR]mod D) 1Y

(47

where the spatial average over the ngth in thex direc-

also in the long-time limit because multiply filtered quanti-
10 | [ l . tie§ s.imply replicate the Iong—time_averqge. For practical ap-
‘ plications of TLES, however, the filter width, however large,
] would be finite. For any finite\, an accurate deconvolution
0'9;' YRV IV [ can be obtained provided the deconvolution order is suffi-
Aéoa:“ " ‘ i | ! é g 1 |y _ ciently high. For example, Fig. 13 compares the quantities
= -3{':3“;‘??;:{ Mi:{ !w‘” r\JH ‘ N. h‘.’:h ‘a W'"iq ! w :'«”u t andv for deconvolutions of differing orders. Herkjs the
% HENE VU R RTRTRR R MR M same time series shown in Fig. B3is its filtered counterpart
S o7r . ] for relatively large filter-width ratia =64, andv is the fil-
— TAOM tered, deconvolved time series. Moreover, here and in the
06 7 subsequent discussiomdenotes the order of the deconvolu-
tion. Note thatr =64 results in the attenuation of nearly all
%% 2|5 ' 3|o 3Is T 40

high-frequency content leaving principally only a fundamen-
tal frequency. Deconvolutions of orders 1, 4, and 7 are pre-

FIG. 12. Optimally phase-compensated correlations between exact an%emed' Whereas, the deconvolutigns1 andp=4 are in
modeled residual stress as functions of time.

poor agreement with, for p=7, v agrees closely with.
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TABLE |. Parameter values for TLES& posteriorianalysis cases and refer- 1.08g— T T T T T T T
ence DNS case. 3,
‘. —— DNS
P DNS(r=8)
Case n At r A p \‘\ 6 TLES4A
DNS 256 1/256 8 132 NA 05 . + MEsz
TLES4.1 128 1/128 4 1/32 1 - \
TLES4.0 128 1/128 4 1/32 0 £
TLES2 64 1/64 2 1/32 0
TLES1 32 1/32 1 1/32 0 0.0 7]
05} “oe
V. A POSTERIORI ANALYSIS ) N T L . 1 . s Py
0 0.1 0.2 0.3 0.4 0.5
Section IV addressed the predictive capability of two s

temporal residual-stress mode{§SSM and TADM by FIG. 14. Autocorrelation functiong(s) of TLES cases compared with
means ofa priori analysis. It is well known that models may those of DNS and filtered DNS. For clarity, every other point shown. Note:
perform well ina pl’iOI’i ana|yses yet fail in actual LES. In autocorrelation is nearly periodic with nominal period unity.

this section, we lend further weight to the potential of TLES

by conductinga posteriorianalyses for the forced VBEEQ.

(41)]. ) . filter-width ratio r =8, which, as will be shown, produces a

_ The governing system for TLES consists of B4l),  gpstantial effect on the frequency spectriRefer to Figs.
with [ 7] replaced byl rrlmog [EQ. (46)], coupled with filter 5 5 5 for the effect of filtering with=8.) Comparisons of
evolution Egs(44) and(45). The filtered forcing functio® 1 gs4, TLES?2, and TLES1 with the filtered DNS results are
is computed fronF via an evolution equation analogous to meaningful only if the filter widthA =r At is the same for all
Eq. (44). We consider only deconvolutions of orders zero and;gges. Accordinglyt =4, r=2, andr=1 for cases TLES4,
unity, p=0 andp=1, respectively. The reader is reminded 1| £s2 and TLES1, respectively.
that the TADM withp=0 is equivalent to the TSSM. Figures 14 and 15 present the autocorrelation functions

The computational methodology for the posteriori  gnq the spectra, respectively, of the DNS, the filtered DNS,

analyses differs somewhat from that of th@riori analyses. 5nd the TLES cases. Spectra are computed as cosine trans-

Specifically, all equations, including the filter evolution fqrms of their respective autocovariance functi®{s); that
equations, are advanced in time by RK4 methodology. Morejg

over, for computational efficiency, spatial derivatives are )
computed pseudospectrally, rather than by the Galerkin =—JmR 4
method exploited previously. For reasons to be discussed S(w) T Jo (s)cogws)ds, (48)
shortly, no de-aliasing procedure is implemented.

In a posteriorianalyses, LES results are compared Withwhere(as beforg w is the circular frequency, and wheSis

results obtained by filtering a reference DNS soluarpost used un<_:onvennona||y for the frequency spectrum because of
éhe previous use dE as expected value. The autocovariance

facto. Parameter values for the reference DNS and TLE IS computed only after the solution has attained stationarity;
cases are presented in Table | below. The reference DNS cage P Y Y:

is exactly that of Sec. IV, with the sole exception that the. at is fort>200. It was established previously that the flow

number of time steps per fundamental forcing period hads homogeneous as well as stationary. Consequently, for pur-

been adjusted. For the DNS solution, both the spatial grid
resolution parameter and the number of time steps per fun-
damental forcing period are integer powers of two to facili- 10% —— —
tate analyses of spectra by Fourier transform methods. Spa-

tial resolution 6 =256) was established so that ttrelative

amplitude of the highest wavenumber was approximately 107
machine epsilon for double precision (10). The number

of time steps per fundamental peri¢@56) was chosen to 5 ¢ _
ensure eight time steps per period at the highest forced har- & 10

monic (kg=32). Relative to the parameters of the reference E
DNS, cases TLES4, TLES2, and TLES1 represent coarsen- 10-6E_ 3

ings in both time and space by successive factors of 2. Thus,
the computational effort of TLES1 is roughly 1/64th that of
the reference DNS. The computational advantages, of course, 107, * =0 "0
are expected to grow dramatically as the number of dimen- /o

sions increases. For a three-dimensional flow, the computa-

tional effort of a similarly coarsened TLES should be (1?64) FIG. 15. Frequency spectra of TLES cases compared with that of DNS and
filtered DNS. For clarity, every other point shown. Spectra terminate at

times that of a fully _reso_lved DNS. o _ frequenciesw/(2m) 128, 64, 32, and 16, for cases DN&hd filtered DN$,
The DNS solution is postprocessed by filtering with TLES4, TLES2, and TLES1, respectively.

8
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poses of computing the autocovariance, it suffices to record Finally, Fig. 16 compares window-averaged turbulence
the time trace of the solution at an arbitrary valueolf this  statistics of selected TLES cases with those of the filtered
time series is denoted simply agt), then DNS. Specifically, Fig. 16, the TLES analog of Fig. 9, results
R(s)=(u(t)u(t+s)), (490  from averaging the turbulence quantities over a temporal
L . . window of durationA=20. The spectra of the filtered and
where the time interval for the windowed average\is 20. unfiltered DNS solutiongFig. 15 differ dramatically, a dif-

Figure 14 compares the autocorrelation function of the

TLES cases with those of the DNS and filtered DNS. Theference reflected in the turbulence statistics of Figs. 16 and 9,

autocorrelation functiom(s) is the autocovariance normal- "€SPectively.(For ease of comparison, the results of Fig. 9

ized by the variance, and the autocorrelation of a periodiél® superim.pc?sed on Fig. 1@dowever, Fig. 16 reveals ex-
signal is itself periodic. Although the Burger’s “flow” is spa- cellent statistical agreement between cases TLES4 and

tially periodic and subject to periodic forcing, the output is TLES2 and the filtered DNS. Because of the suspected alias-
not quite periodic because of the quadratic nonlinearity ofng errors, case TLESL1 is not presented.

the governing equation. Consequently, in all cas¥s) is Although full verification of TLES awaits simulation of
subjected to a Parzen windowing function prior to the transthree-dimensional flows at high Reynolds number, present
form by Eq.(48). results with forced, viscous Burger’s “flow” are encouraging

Figure 15 compares the spectra of the TLES cases withng suggest that TLES should be further investigated.
those of the DNS and filtered DNS. The spectra of the DNS

and filtered DNS differ dramatically. The TLES spectra
match the filtered DNS spectrum extremely well in all cases
except TLES1. Surprisingly, there is little difference in the
p=0 andp=1 deconvolutions of case TLES4, with the ex- \/j cONCLUSIONS
ception of minor differences at the higher frequencies.
To avoid mixing temporal and spatial filtering and cloud-  the pehavior of the residual stress of the temporally fil-

ing the effects of(purely temporal filtering, no de-aliasing tered Navier—Stoke$TFNS) equations was studied for a

procedures were implemented for any of the computations, . . . - .
. . class of differential, causal time-domain filters parametrized
The DNS computation, being well resolved, needed no de;

aliasing. Cases TLES4 are also well resolved because higllﬁ-)—y the Femporal filter widthd. T.he effect of filter W'dth on
frequency content is strongly attenuated by the filter. Casé® residual stress was examined for the asymptotic limits
TLES2 is only marginally resolved. The spectrum for case®—0 andA— and for the case of finite filter width. It was
TLES1, which is severely under-resolved because if fails théhown analytically that, in the limiA—0, the residual stress
Nyquist criterion, agrees moderately well with that of the vanishes so that the Navier—Stokes equations are recovered
filtered DNS; however, it tends to overshoot at all frequen-from the temporally filtered equations. Alternately, in the
cies, most likely a result of aliasing errors. limit A—oo, for a statistically steady flow, the residual stress
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asymptotically approaches the Reynolds stress, and théu. Frisch, Turbulence(Cambridge University Press, Cambridge, 1995
Reynolds-averaged Navier—Stokes equations are recoveretyl- Germano, U. Piomelli, P. Moin, and W. H. Cabot, “A dynamic subgrid-

’ ; ; _ scale eddy viscosity model,” Phys. Fluids3) 1760(1991).
from the temporally filtered equations. These asymptotic re 3J. A. Domaradzki and E. M. Saiki, “A subgrid-scale model based on the

sults were Yeriﬁed numerif:a”y through SimU|ati_OnS of the estimation of unresolved scales of turbulence,” Phys. Flds2148
temporally filtered forced, viscous Burger’s equation. For the (1997.
case of finite filter widths, two residual-stress models were"S. Stolz and N. A. Adams, “An approximate deconvolution procedure for
considered that are temporal analogs of spatial SGS—stres;%‘rge“?ddy simulation,” Phys. Fluidil, 1699(1999.
dels. These were a temporal scale similarity model - Moin and J. Jimenez, “Large-eddy simulation of complex turbulent

moaels. Po rty flows,” AIAA Pap. No. 93-3099(1993.
(TSSM) and a temporal approximate deconvolution modelém. Germano, “From RANS to DNS: Toward a bridging modeDirect
(TADM). A priori anda posteriorianalyses of these models and Large-Eddy Simulation-likedited by P. R. Voke, N. D. Sandham, and
were performed using highly accurate numerical solutions of, - Kleiser (Kiuwer, Dordrecht, 1998 p. 225.
the filt d f d. Vi B s ti Th del M. Germano, “LES overview,” inDNS/LES Progress and Challenges

¢ hiiered torced, V'59°U5 urger_s équation. e m(_) €IS edited by C. Liu, L. Sakell, and T. Beutn¢Greyden, Columbus, OH,
were found to approximately replicate the exact residual 200, p. 1.
stress. Moreover, frequency spectra obtained from tempordlR. D. Strum and D. E. KirkFirst Principles of Discrete Systems and

LES (TLES) agreed closely with the appropriate spectrum Q(D:igga' lfig“;\' f(f)OCGESSImQAdtti_isonaWeS_leyf,_Ii\le_w ch>rk, 19§$| | Ny
extracted from f||tered DNS . D. Pruett, n eulerian time-aomain ftitering for spatial large-eday

. . simulation,” AIAA J. 38, 1634(2000.
It has been shown analytically that the residual stress ofog_ a. glaisdell, “Computation of discrete filters and differential operators

the TENS equations is strongly dependent upon the temporalfor large-eddy simulation,Advances in DNS/LE®dited by C. Liu and Z.
filter width. This fact, coupled with computational results Liu (Greyden, Columbus, OH, 1987. 333.

1 H : “ .
: : : ) ; O. V. Vasilyev, T. S. Lund, and P. Moin, “A general class of commutative
from simulating the forced, viscous Burger’s equation over a fiters for LES in complex geometries,” J. Comput. Phga1. 82 (1998.

Wi(_je range of temporal f"te_r widths, suggests th_at full simu-12c p_pryett, N. A. Adams, and J. S. Sochacki, “On Taylor-series expan-
lations of the TFNS equations should behave like DNS for sions of residual stress,” Phys. Fluid8, 2578(2002).
small temporal filter widths and like RANS for very large 13C. D. Pruett, “Toward the de-mystification of LESPNS/LES Progress

ones. For finite filter widths the formulation describes a tem- @d Challengesedited by C. Liu, L. Sakell, and T. Beutné@reyden,
Columbus, OH, 2001 p. 231.

pqral!y filtered LE_S or TLES. These rfasu'ts hav_e prOViqed a4G. D. Stefano and O. V. Vasilyev, “A study of the effect of smooth filter-
bridging mechanism between solutions obtained directly ing in LES,” in Ref. 13, p. 247.
from the Navier—Stokes equations and those obtained frorfiC. G. Speziale, “Subgrid scale stress models for large-eddy simulation of

he Revnolds-aver Navier— Kk ions. hi tating turbulent flows,” Geophys. Astrophys. Fluid Dy38, 199(1985.
the Rey olds-ave aged avier—Stokes equations Suc deﬁg G. Speziale, “Invariance of turbulent closure models,” Phys. Fl@®2ls

are being pursued further and will be the subject of a subse-1033(1g79'
quent paper. 1C. G. Speziale, “Galilean invariance of subgrid-scale stress models in the
large-eddy simulation of turbulence,” J. Fluid Mectb6, 55 (1985.
183, Bardina, J. H. Ferziger, and W. C. Reynolds, “Improved subgrid-scale
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