1,052 research outputs found

    Focusing New Ataxia Telangiectasia Therapeutic Approaches

    Get PDF
    Ataxia Telangiectasia (AT) is a rare worldwide disease inherited as autosomal recessive with a poor prognosis in its classical form. It is characterized by neurological impairment (progressive cerebellar ataxia, axonal peripheral neuropathy, oculomotor apraxia, and movement disorders such as dystonia, choreoathetosis, myoclonus, tremor, Parkinsonism), telangiectasias, recurrent sino pulmonary infections, proneness to cancer, increased alpha-fetoprotein and decreased IgA levels and radio hypersensitivity. AT is caused by biallelic mutations in ATM gene, which plays a pivotal role in the control of cell cycle and in the response to DNA double strand break damage and chromatin changes. The management of patients, as well as prognosis, depends on the severity of the phenotype; only symptomatic therapies are by now available. Here we discuss the classical and the new therapeutic approaches in the light of the most recent reports in the literature

    Crack roughness and avalanche precursors in the random fuse model

    Get PDF
    We analyze the scaling of the crack roughness and of avalanche precursors in the two dimensional random fuse model by numerical simulations, employing large system sizes and extensive sample averaging. We find that the crack roughness exhibits anomalous scaling, as recently observed in experiments. The roughness exponents (ζ\zeta, ζloc\zeta_{loc}) and the global width distributions are found to be universal with respect to the lattice geometry. Failure is preceded by avalanche precursors whose distribution follows a power law up to a cutoff size. While the characteristic avalanche size scales as s0∼LDs_0 \sim L^D, with a universal fractal dimension DD, the distribution exponent τ\tau differs slightly for triangular and diamond lattices and, in both cases, it is larger than the mean-field (fiber bundle) value τ=5/2\tau=5/2

    COVID-19: Considerations about immune suppression and biologicals at the time of SARS-CoV-2 pandemic

    Get PDF
    The extent of the profound immunological and nonimmunological responses linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being investigated worldwide due to the large burden associated with death due to SARS-CoV-2 and the short-term consequences of coronavirus disease 2019 (COVID-19). It has been hypothesized that patients on immunosuppressive treatments, including biologics, may have an augmented risk of being infected by SARS-CoV-2; however, there are currently no definitive data about biological drugs and COVID-19 in immune-mediated inflammatory diseases. Current epidemiological models developed to understand how long the COVID-19 epidemic may last are not conclusive and range from sustained epidemics to complete elimination. Nevertheless, even in the best-case scenario of apparent elimination, there is concordance about a possible contagion resurgence as late as 2024. Therefore, knowledge of the impact of SARS-CoV-2 on immune-mediated diseases and among patients treated with biologicals, together with the results of novel and promising COVID-19 treatment strategies targeting the virus and the host immune response (or both), will help us to best manage our patients during this pandemic over the next few years

    Precision agriculture to improve the monitoring and management of tomato insect pests

    Get PDF
    Human-based monitoring of arthropod pests of agricultural importance is usually a time-consuming and costly activity. The advent of technologies such as automatic traps opens new opportunities for remote monitoring. In this article, we present a novel Artificial Intelligence (AI)-based approach aimed to developing a smart trap for monitoring two major pests of greenhouse tomatoes, namely whiteflies, i.e., Bemisia tabaci and Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), and leaf miner flies, Liriomyza spp. (Diptera: Agromyzidae)

    Visible Light-Promoted Oxidative Cross-Coupling of Alcohols to Esters

    Get PDF
    Ester is one of the most significant functional groups in organic chemistry and is enclosed in several valued molecules. Usually, esters are prepared through the acid-catalyzed esterification reaction of carboxylic acids with alcohols, transesterification of esters with alcohols, or via activation of carboxylic acids followed by the addition of alcohols. However, these procedures typically imply the excess use of reactants and harsh reaction conditions. Visible light-mediated photoreactions have been disclosed to display a safe, sustainable, and accessible alternative to traditional methods, and to lead new reactivity modes in organic procedures. In this context, we propose a transition metal-based and organic-based photocatalyst-free synthesis of esters from alcohols induced by visible light. The methodology can be carried out using sunlight or artificial visible light as a solar simulator or a blue LED source

    Ataxia with oculomotor apraxia type 2: a clinical, pathologic, and genetic study

    Get PDF
    BACKGROUND: Ataxia with oculomotor apraxia type 2 (AOA2) is characterized by onset between age 10 and 22 years, cerebellar atrophy, peripheral neuropathy, oculomotor apraxia (OMA), and elevated serum alpha-fetoprotein (AFP) levels. Recessive mutations in SETX have been described in AOA2 patients. OBJECTIVE: To describe the clinical features of AOA2 and to identify the SETX mutations in 10 patients from four Italian families. METHODS: The patients underwent clinical examination, routine laboratory tests, nerve conduction studies, sural nerve biopsy, and brain MRI. All were screened for SETX mutations. RESULTS: All the patients had cerebellar features, including limb and truncal ataxia, and slurred speech. OMA was observed in two patients, extrapyramidal symptoms in two, and mental impairment in three. High serum AFP levels, motor and sensory axonal neuropathy, and marked cerebellar atrophy on MRI were detected in all the patients who underwent these examinations. Sural nerve biopsy revealed a severe depletion of large myelinated fibers in one patient, and both large and small myelinated fibers in another. Postmortem findings are also reported in one of the patients. Four different homozygous SETX mutations were found (a large-scale deletion, a missense change, a single-base deletion, and a splice-site mutation). CONCLUSIONS: The clinical phenotype of oculomotor apraxia type 2 is fairly homogeneous, showing only subtle intrafamilial variability. OMA is an inconstant finding. The identification of new mutations expands the array of SETX variants, and the finding of a missense change outside the helicase domain suggests the existence of at least one more functional region in the N-terminus of senataxin

    A deep learning-based pipeline for whitefly pest abundance estimation on chromotropic sticky traps

    Get PDF
    Integrated Pest Management (IPM) is an essential approach used in smart agriculture to manage pest populations and sustainably optimize crop production. One of the cornerstones underlying IPM solutions is pest monitoring, a practice often performed by farm owners by using chromotropic sticky traps placed on insect hot spots to gauge pest population densities. In this paper, we propose a modular model-agnostic deep learning-based counting pipeline for estimating the number of insects present in pictures of chromotropic sticky traps, thus reducing the need for manual trap inspections and minimizing human effort. Additionally, our solution generates a set of raw positions of the counted insects and confidence scores expressing their reliability, allowing practitioners to filter out unreliable predictions. We train and assess our technique by exploiting PST - Pest Sticky Traps, a new collection of dot-annotated images we created on purpose and we publicly release, suitable for counting whiteflies. Experimental evaluation shows that our proposed counting strategy can be a valuable Artificial Intelligence-based tool to help farm owners to control pest outbreaks and prevent crop damages effectively. Specifically, our solution achieves an average counting error of approximately compared to human capabilities requiring a matter of seconds, a large improvement respecting the time-intensive process of manual human inspections, which often take hours or even days
    • …
    corecore