18 research outputs found

    Short report: Semi-quantitative scoring of an immunochromatographic test for circulating filarial antigen

    Get PDF
    The value of a semi-quantitative scoring of the filarial antigen test (Binax Now Filariasis card test, ICT) results was evaluated during a field survey in. the Republic of Congo. One hundred and thirty-four (134) of 774 tests (17.3%) were clearly positive and were scored 1, 2, or 3; and 11 (1.4%) had questionable results. Wuchereria bancrofti microfilariae (mf) were detected in 41 of those 133 individuals with an ICT test score 1 who also had a night blood smear; none of the 11 individuals with questionable ICT results harbored night mf. Cuzick's test showed a significant trend for higher microfilarial densities in groups with higher ICT scores (P < 0.001). The ICT scores were also significantly correlated with blood mf counts. Because filarial antigen levels provide an indication of adult worm infection intensity, our results suggest that semi-quantitative reading of the ICT may be useful for grading the intensity of filarial infections in individuals and populations

    A homogenization technique applied to periodic buildings.

    No full text
    7th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN), HERSONISSOS, GRECE, 24-/06/2019 - 26/06/2019The homogenization technique consists in describ-ing the global behavior of the structure with an &apos;equivalent beam&apos; model according to the following process : (i) Static analysis of only a story for the determination of the mechanical properties of the global model, (ii) Dynamic analysis of the equivalent beam, which is a 1D analytical model, (iii) Application of the macroscopic deformation on the model of a story in order to compute the internal forces of the structural elements

    Heterogeneity in elimination efforts could increase the risk of resurgence of lymphatic filariasis in Madagascar

    No full text
    International audienceBackground: Progress in lymphatic filariasis (LF) elimination is spatially heterogeneous in many endemic countries, which may lead to resurgence in areas that have achieved elimination. Understanding the drivers and consequences of such heterogeneity could help inform strategies to reach global LF elimination goals by 2030. This study assesses whether differences in age-specific compliance with mass drug administration (MDA) could explain LF prevalence patterns in southeastern Madagascar and explores how spatial heterogeneity in prevalence and age-specific MDA compliance may affect the risk of LF resurgence after transmission interruption.Methodology: We used LYMFASIM model with parameters in line with the context of southeastern Madagascar and explored a wide range of scenarios with different MDA compliance for adults and children (40–100%) to estimate the proportion of elimination, non-elimination and resurgence events associated with each scenario. Finally, we evaluated the risk of resurgence associated with different levels of migration (2–6%) from surrounding districts combined with varying levels of LF microfilaria (mf) prevalence (0–24%) during that same study period.Results: Differences in MDA compliance between adults and children better explained the observed heterogeneity in LF prevalence for these age groups than differences in exposure alone. The risk of resurgence associated with differences in MDA compliance scenarios ranged from 0 to 19% and was highest when compliance was high for children (e.g. 90%) and low for adults (e.g. 50%). The risk of resurgence associated with migration was generally higher, exceeding 60% risk for all the migration levels explored (2–6% per year) when mf prevalence in the source districts was between 9% and 20%. Conclusion: Gaps in the implementation of LF elimination programme can increase the risk of resurgence and undermine elimination efforts. In Madagascar, districts that have not attained elimination pose a significant risk for those that have achieved it. More research is needed to help guide LF elimination programme on the optimal strategies for surveillance and control that maximize the chances to sustain elimination and avoid resurgence

    Delivery by shock waves of active principle embedded in gelatin-based capsules

    No full text
    International audiencePurpose: Delivering a drug close to the targeted cells improves its benefit versus risk ratio. A possible method for local drug delivery is to encapsulate the drug into solid microscopic carriers and to release it by ultrasound. The objective of this work was to use shock waves for delivering a molecule loaded in polymeric microcapsules. Material and methods: Ethyl benzoate (EBZ) was encapsulated in spherical gelatin shells by complex coacervation. A piezocomposite shock wave generator (120 mm in diameter, focused at 97 mm, pulse length 1.4 ls) was used for sonicating the capsules and delivering the molecule. Shock parameters (acoustic pressure, number of shocks and shock repetition frequency) were varied in order to measure their influence on EBZ release. A cavitation-inhibitor liquid (Ablasonic Ò) was then used to evaluate the role of cavitation in the capsule disruption. Results: The measurements showed that the mean quantity of released EBZ was proportional to the acoustic pressure of the shock wave (r 2 > 0.99), and increased with the number of applied shocks. Up to 88% of encapsulated EBZ could be released within 4 min only (240 shocks, 1 Hz). However, the quantity of released EBZ dropped at high shock rates (above 2 Hz). Ultrasound imaging sequences showed that cavitation clouds might form, at high shock rates, along the acoustic axis making the exposure inefficient. Measurements done in Ablasonic Ò showed that cavitation plays a major role in microcapsules disruption. Conclusions: In this study, we designed polymeric capsules that can be disrupted by shock waves. This type of microcapsule is theoretically a suitable vehicle for carrying hydrophobic drugs. Following these positive results, encapsulation of drugs is considered for further medical applications

    Delivery by shock waves of active principle embedded in gelatin-based capsules.

    No full text
    International audiencePURPOSE: Delivering a drug close to the targeted cells improves its benefit versus risk ratio. A possible method for local drug delivery is to encapsulate the drug into solid microscopic carriers and to release it by ultrasound. The objective of this work was to use shock waves for delivering a molecule loaded in polymeric microcapsules. MATERIAL AND METHODS: Ethyl benzoate (EBZ) was encapsulated in spherical gelatin shells by complex coacervation. A piezocomposite shock wave generator (120 mm in diameter, focused at 97 mm, pulse length 1.4 micros) was used for sonicating the capsules and delivering the molecule. Shock parameters (acoustic pressure, number of shocks and shock repetition frequency) were varied in order to measure their influence on EBZ release. A cavitation-inhibitor liquid (Ablasonic) was then used to evaluate the role of cavitation in the capsule disruption. RESULTS: The measurements showed that the mean quantity of released EBZ was proportional to the acoustic pressure of the shock wave (r2 > 0.99), and increased with the number of applied shocks. Up to 88% of encapsulated EBZ could be released within 4 min only (240 shocks, 1 Hz). However, the quantity of released EBZ dropped at high shock rates (above 2Hz). Ultrasound imaging sequences showed that cavitation clouds might form, at high shock rates, along the acoustic axis making the exposure inefficient. Measurements done in Ablasonic showed that cavitation plays a major role in microcapsules disruption. CONCLUSIONS: In this study, we designed polymeric capsules that can be disrupted by shock waves. This type of microcapsule is theoretically a suitable vehicle for carrying hydrophobic drugs. Following these positive results, encapsulation of drugs is considered for further medical applications

    Delivery by shock waves of active principle embedded in gelatin-based capsules

    No full text
    International audiencePurpose: Delivering a drug close to the targeted cells improves its benefit versus risk ratio. A possible method for local drug delivery is to encapsulate the drug into solid microscopic carriers and to release it by ultrasound. The objective of this work was to use shock waves for delivering a molecule loaded in polymeric microcapsules. Material and methods: Ethyl benzoate (EBZ) was encapsulated in spherical gelatin shells by complex coacervation. A piezocomposite shock wave generator (120 mm in diameter, focused at 97 mm, pulse length 1.4 ls) was used for sonicating the capsules and delivering the molecule. Shock parameters (acoustic pressure, number of shocks and shock repetition frequency) were varied in order to measure their influence on EBZ release. A cavitation-inhibitor liquid (Ablasonic Ò) was then used to evaluate the role of cavitation in the capsule disruption. Results: The measurements showed that the mean quantity of released EBZ was proportional to the acoustic pressure of the shock wave (r 2 > 0.99), and increased with the number of applied shocks. Up to 88% of encapsulated EBZ could be released within 4 min only (240 shocks, 1 Hz). However, the quantity of released EBZ dropped at high shock rates (above 2 Hz). Ultrasound imaging sequences showed that cavitation clouds might form, at high shock rates, along the acoustic axis making the exposure inefficient. Measurements done in Ablasonic Ò showed that cavitation plays a major role in microcapsules disruption. Conclusions: In this study, we designed polymeric capsules that can be disrupted by shock waves. This type of microcapsule is theoretically a suitable vehicle for carrying hydrophobic drugs. Following these positive results, encapsulation of drugs is considered for further medical applications
    corecore