449 research outputs found
Detection of Semi-Major Axis Drifts in 54 Near-Earth Asteroids: New Measurements of the Yarkovsky Effect
We have identified and quantified semi-major axis drifts in Near-Earth
Asteroids (NEAs) by performing orbital fits to optical and radar astrometry of
all numbered NEAs. We focus on a subset of 54 NEAs that exhibit some of the
most reliable and strongest drift rates. Our selection criteria include a
Yarkovsky sensitivity metric that quantifies the detectability of semi-major
axis drift in any given data set, a signal-to-noise metric, and orbital
coverage requirements. In 42 cases, the observed drifts (~10^-3 AU/Myr) agree
well with numerical estimates of Yarkovsky drifts. This agreement suggests that
the Yarkovsky effect is the dominant non-gravitational process affecting these
orbits, and allows us to derive constraints on asteroid physical properties. In
12 cases, the drifts exceed nominal Yarkovsky predictions, which could be due
to inaccuracies in our knowledge of physical properties, faulty astrometry, or
modeling errors. If these high rates cannot be ruled out by further
observations or improvements in modeling, they would be indicative of the
presence of an additional non-gravitational force, such as that resulting from
a loss of mass of order a kilogram per second. We define the Yarkovsky
efficiency f_Y as the ratio of the change in orbital energy to incident solar
radiation energy, and we find that typical Yarkovsky efficiencies are ~10^-5.Comment: Accepted for publication by The Astronomical Journal. 42 pages, 8
figure
ExploreNEOs I: Description and first results from the Warm Spitzer NEO Survey
We have begun the ExploreNEOs project in which we observe some 700 Near Earth
Objects (NEOs) at 3.6 and 4.5 microns with the Spitzer Space Telescope in its
Warm Spitzer mode. From these measurements and catalog optical photometry we
derive albedos and diameters of the observed targets. The overall goal of our
ExploreNEOs program is to study the history of near-Earth space by deriving the
physical properties of a large number of NEOs. In this paper we describe both
the scientific and technical construction of our ExploreNEOs program. We
present our observational, photometric, and thermal modeling techniques. We
present results from the first 101 targets observed in this program. We find
that the distribution of albedos in this first sample is quite broad, probably
indicating a wide range of compositions within the NEO population. Many objects
smaller than one kilometer have high albedos (>0.35), but few objects larger
than one kilometer have high albedos. This result is consistent with the idea
that these larger objects are collisionally older, and therefore possess
surfaces that are more space weathered and therefore darker, or are not subject
to other surface rejuvenating events as frequently as smaller NEOs.Comment: AJ in pres
ExploreNEOs. II. The Accuracy of the Warm Spitzer Near-Earth Object Survey
We report on results of observations of near-Earth objects (NEOs) performed with the NASA Spitzer Space Telescope as part of our ongoing (2009-2011) Warm Spitzer NEO survey ("ExploreNEOs"), the primary aim of which is to provide sizes and albedos of some 700 NEOs. The emphasis of the work described here is an assessment of the overall accuracy of our survey results, which are based on a semi-empirical generalized model of asteroid thermal emission. The NASA Spitzer Space Telescope has been operated in the so-called Warm Spitzer mission phase since the cryogen was depleted in 2009 May, with the two shortest-wavelength channels, centered at 3.6 Îźm and 4.5 Îźm, of the Infrared Array Camera continuing to provide valuable data. The set of some 170 NEOs in our current Warm Spitzer results catalog contains 28 for which published taxonomic classifications are available, and 14 for which relatively reliable published diameters and albedos are available. A comparison of the Warm Spitzer results with previously published results ("ground truth"), complemented by a Monte Carlo error analysis, indicates that the rms Warm Spitzer diameter and albedo errors are Âą20% and Âą50%, respectively. Cases in which agreement with results from the literature is worse than expected are highlighted and discussed; these include the potential spacecraft target 138911 2001 AE_2. We confirm that 1.4 appears to be an appropriate overall default value for the relative reflectance between the V band and the Warm Spitzer wavelengths, for use in correction of the Warm Spitzer fluxes for reflected solar radiation
ExploreNEOs. III. Physical Characterization of 65 Potential Spacecraft Target Asteroids
Space missions to near-Earth objects (NEOs) are being planned at all major space agencies, and recently a manned mission to an NEO was announced as a NASA goal. Efforts to find and select suitable targets (plus backup targets) are severely hampered by our lack of knowledge of the physical properties of dynamically favorable NEOs. In particular, current mission scenarios tend to favor primitive low-albedo objects. For the vast majority of NEOs, the albedo is unknown. Here we report new constraints on the size and albedo of 65 NEOs with rendezvous Îv <7 km s^(â1). Our results are based on thermal-IR flux data obtained in the framework of our ongoing (2009-2011) ExploreNEOs survey using NASA's "Warm-Spitzer" space telescope. As of 2010 July 14, we have results for 293 objects in hand (including the 65 low-Îv NEOs presented here); before the end of 2011, we expect to have measured the size and albedo of ~700 NEOs (including probably ~160 low-Îv NEOs). While there are reasons to believe that primitive volatile-rich materials are universally low in albedo, the converse need not be true: the orbital evolution of some dark objects likely has caused them to lose their volatiles by coming too close to the Sun. For all our targets, we give the closest perihelion distance they are likely to have reached (using orbital integrations from Marchi et al. 2009) and corresponding upper limits on the past surface temperature. Low-Îv objects for which both albedo and thermal history may suggest a primitive composition include (162998) 2001 SK162, (68372) 2001 PM9, and (100085) 1992 UY4
Pre-Impact Thermophysical Properties and the Yarkovsky Effect of NASA DART Target (65803) Didymos
The NASA DART (Double Asteroid Redirection Test) spacecraft impacted the secondary body of the binary asteroid (65803) Didymos on 2022 September 26and altered its orbit about the primary body. Before the DART impact, we performed visible and mid-infrared observations to constrain the pre-impact thermophysical properties of the Didymos system and to model its Yarkovsky effect. Analysis of the photometric phase curve derives a Bond albedo of 0.07 ¹ 0.01, and a thermophysical analysis of the mid-infrared observations derives a thermal inertia of 320 ¹ 70 J m-2 K-1 s-1/2 and a thermal roughness of 40° ¹ 3° RMS (root-mean-square) slope. These properties are compatible with the ranges derived for other S-type near-Earth asteroids. Model-to-measurement comparisons of the Yarkovsky orbital drift for Didymos derives a bulk density of 2750 ¹ 350 kg m-3, which agrees with other independent measures based on the binary mutual orbit. This bulk density indicates that Didymos is spinning at or near its critical spin-limit at which self-gravity balances equatorial centrifugal forces. Furthermore, comparisons with the post-impact infrared observations presented in Rivkin et al. (2023) indicate no change in the thermal inertia of the Didymos system following the DART impact. Finally, orbital temperature simulations indicate that sub-surface water ice is stable over geologic timescales in the polar regions if present. These findings will be investigated in more detail by the upcoming ESA Hera mission.<br/
Invasive Group A Streptococcal Infection in Older Adults in Long-term Care Facilities and the Community, United States, 1998â20031
Invasive infection develops almost 6 times as frequently in the elderly in long-term care facilities
Autonomous Detection of Particles and Tracks in Optical Images
During its initial orbital phase in early 2019, the Origins, Spectral
Interpretation, Resource Identification, and Security-Regolith Explorer
(OSIRIS-REx) asteroid sample return mission detected small particles apparently
emanating from the surface of the near-Earth asteroid (101955) Bennu in optical
navigation images. Identification and characterization of the physical and
dynamical properties of these objects became a mission priority in terms of
both spacecraft safety and scientific investigation. Traditional techniques for
particle identification and tracking typically rely on manual inspection and
are often time-consuming. The large number of particles associated with the
Bennu events and the mission criticality rendered manual inspection techniques
infeasible for long-term operational support. In this work, we present
techniques for autonomously detecting potential particles in monocular images
and providing initial correspondences between observations in sequential
images, as implemented for the OSIRIS-REx mission.Comment: 23 pages, 10 figure
The Science Case for an Extended Spitzer Mission
Although the final observations of the Spitzer Warm Mission are currently
scheduled for March 2019, it can continue operations through the end of the
decade with no loss of photometric precision. As we will show, there is a
strong science case for extending the current Warm Mission to December 2020.
Spitzer has already made major impacts in the fields of exoplanets (including
microlensing events), characterizing near Earth objects, enhancing our
knowledge of nearby stars and brown dwarfs, understanding the properties and
structure of our Milky Way galaxy, and deep wide-field extragalactic surveys to
study galaxy birth and evolution. By extending Spitzer through 2020, it can
continue to make ground-breaking discoveries in those fields, and provide
crucial support to the NASA flagship missions JWST and WFIRST, as well as the
upcoming TESS mission, and it will complement ground-based observations by LSST
and the new large telescopes of the next decade. This scientific program
addresses NASA's Science Mission Directive's objectives in astrophysics, which
include discovering how the universe works, exploring how it began and evolved,
and searching for life on planets around other stars.Comment: 75 pages. See page 3 for Table of Contents and page 4 for Executive
Summar
Niche as a determinant of word fate in online groups
Patterns of word use both reflect and influence a myriad of human activities
and interactions. Like other entities that are reproduced and evolve, words
rise or decline depending upon a complex interplay between {their intrinsic
properties and the environments in which they function}. Using Internet
discussion communities as model systems, we define the concept of a word niche
as the relationship between the word and the characteristic features of the
environments in which it is used. We develop a method to quantify two important
aspects of the size of the word niche: the range of individuals using the word
and the range of topics it is used to discuss. Controlling for word frequency,
we show that these aspects of the word niche are strong determinants of changes
in word frequency. Previous studies have already indicated that word frequency
itself is a correlate of word success at historical time scales. Our analysis
of changes in word frequencies over time reveals that the relative sizes of
word niches are far more important than word frequencies in the dynamics of the
entire vocabulary at shorter time scales, as the language adapts to new
concepts and social groupings. We also distinguish endogenous versus exogenous
factors as additional contributors to the fates of words, and demonstrate the
force of this distinction in the rise of novel words. Our results indicate that
short-term nonstationarity in word statistics is strongly driven by individual
proclivities, including inclinations to provide novel information and to
project a distinctive social identity.Comment: Supporting Information is available here:
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0019009.s00
- âŚ