170 research outputs found
Differential regulation of the SMN2 gene by individual HDAC proteins
Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that is the leading genetic cause of infantile death. SMA is caused by homozygous deletion or mutation of the survival of motor neuron 1 gene (SMN1). The SMN2 gene is nearly identical to SMN1, however is alternatively spliced. The close relationship to SMN1 results in SMN2 being a very power genetic modifier of SMA disease severity and a target for therapies. We sought to identify the regulatory role individual HDAC proteins use to control expression of full length protein from the SMN2 genes. We used quantitative PCR to determine the effects shRNA silencing of individual HDACs on the steady state levels of a SMN2-luciferase reporter transcripts. We determined that reduction of individual HDAC proteins was sufficient to increase SMN protein levels in a transgenic reporter system. Knockdown of class I HDAC proteins preferentially activated the reporter by increased promoter transcription. Silencing of class II HDAC proteins maintained transcriptional activity; however silencing of HDAC 5 and 6 also appeared to enhance inclusion of an alternatively spliced exon. This work highlights HDAC proteins 2 and 6 as excellent investigative targets. These data are important to the basic understanding of SMN expression regulation and the refinements of current therapeutic compounds as well as the development of novel SMA therapeutics
Identification of Novel Compounds That Increase SMN Protein Levels Using an Improved SMN2 Reporter Cell Assay
Spinal muscular atrophy (SMA) is a neurodegenerative disorder that is characterized by progressive loss of motor neuron function. It is caused by the homozygous loss of the SMN1 (survival of motor neuron 1) gene and a decrease in full-length SMN protein. SMN2 is a nearly identical homolog of SMN1 that, due to alternative splicing, expresses predominantly truncated SMN protein. SMN2 represents an enticing therapeutic target. Increasing expression of full-length SMN from the SMN2 gene might represent a treatment for SMA. We describe a newly designed cell-based reporter assay that faithfully and reproducibly measures full-length SMN expression from the SMN2 gene. This reporter can detect increases of SMN protein by an array of compounds previously shown to regulate SMN2 expression and by the overexpression of proteins that modulate SMN2 splicing. It also can be used to evaluate changes at both the transcriptional and splicing level. This assay can be a valuable tool for the identification of novel compounds that increase SMN2 protein levels and the optimization of compounds already known to modulate SMN2 expression. We present here preliminary data from a high-throughput screen using this assay to identify novel compounds that increase expression of SMN2
Differential gene expression in the cortical sulcus compared to the gyral crest within the early stages of chronic traumatic encephalopathy
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative tauopathy found in individuals with a history of repetitive head impacts (RHI). Previous work has demonstrated that neuroinflammation is involved in CTE pathogenesis, however, the specific inflammatory mechanisms are still unclear. Here, using RNA-sequencing and gene set enrichment analysis (GSEA), we investigated the genetic changes found in tissue taken from the region CTE pathology is first found, the cortical sulcus, and compared it to neighboring gryal crest tissue to identify what pathways were directly related to initial hyperphosphorylated tau (p-tau) deposition. 21 cases were chosen for analysis: 6 cases had no exposure to RHI or presence of neurodegenerative disease (Control), 5 cases had exposure to RHI but no presence of neurodegenerative disease (RHI), and 10 cases had exposure to RHI and low stage CTE (CTE). Two sets of genes were identified: genes that changed in both the sulcus and crest and genes that changed specifically in the sulcus relative to the crest. When examining genes that changed in both the sulcus and crest, GSEA demonstrated an increase in immune related processes and a decrease in neuronal processes in RHI and CTE groups. Sulcal specific alterations were observed to be driven by three mechanisms: anatomy, RHI, or p-tau. First, we observed consistent sulcal specific alterations in immune, extracellular matrix, vascular, neuronal, and endocytosis/exocytosis categories across all groups, suggesting the sulcus has a unique molecular signature compared to the neighboring crest independent of pathology. Second, individuals with a history of RHI demonstrated impairment in metabolic and mitochondrial related processes. Finally, in individuals with CTE, we observed impairment of immune and phagocytic related processes. Overall, this work provides the first observation of biological processes specifically altered in the sulcus that could be directly implicated in CTE pathogenesis and provide novel targets for biomarkers and therapies
Recommended from our members
Enhancement of SMN protein levels in a mouse model of spinal muscular atrophy using novel drug-like compounds
Spinal muscular atrophy (SMA) is a neurodegenerative disease that causes progressive muscle weakness, which primarily targets proximal muscles. About 95% of SMA cases are caused by the loss of both copies of the SMN1 gene. SMN2 is a nearly identical copy of SMN1, which expresses much less functional SMN protein. SMN2 is unable to fully compensate for the loss of SMN1 in motor neurons but does provide an excellent target for therapeutic intervention. Increased expression of functional full-length SMN protein from the endogenous SMN2 gene should lessen disease severity. We have developed and implemented a new high-throughput screening assay to identify small molecules that increase the expression of full-length SMN from a SMN2 reporter gene. Here, we characterize two novel compounds that increased SMN protein levels in both reporter cells and SMA fibroblasts and show that one increases lifespan, motor function, and SMN protein levels in a severe mouse model of SMA
Measuring the Relative Strong Phase in and Decays
In a recently suggested method for measuring the weak phase in
decays, the relative strong phase in and decays (equivalently, in and \od \to K^{*+} K^-) plays a role. It is shown how a study of
the Dalitz plot in can yield information on this phase,
and the size of the data sample which would give a useful measurement is
estimated.Comment: 13 pages, latex, 5 figures, submitted to Phys. Rev. D. Appendix and
some text on additional resonant contributions adde
Field Research Is Essential to Counter Virological Threats
The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats. Only by monitoring dynamic viral populations and defining their biology in situ can we gather the information needed to ensure effective pandemic preparation.</p
Ecosystem Interactions Underlie the Spread of Avian Influenza A Viruses with Pandemic Potential
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection.National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN266200700010C))National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C))National Institutes of Health (U.S.) (NIH Centers for Excellence in Influenza Research and Surveillance (CEIRS, contract # HHSN272201400006C)
HRAS1 and LASS1 with APOE are associated with human longevity and healthy aging
The search for longevity-determining genes in human has largely neglected the operation of genetic interactions. We have identified a novel combination of common variants of three genes that has a marked association with human lifespan and healthy aging. Subjects were recruited and stratified according to their genetically inferred ethnic affiliation to account for population structure. Haplotype analysis was performed in three candidate genes, and the haplotype combinations were tested for association with exceptional longevity. An HRAS1 haplotype enhanced the effect of an APOE haplotype on exceptional survival, and a LASS1 haplotype further augmented its magnitude. These results were replicated in a second population. A profile of healthy aging was developed using a deficit accumulation index, which showed that this combination of gene variants is associated with healthy aging. The variation in LASS1 is functional, causing enhanced expression of the gene, and it contributes to healthy aging and greater survival in the tenth decade of life. Thus, rare gene variants need not be invoked to explain complex traits such as aging; instead rare congruence of common gene variants readily fulfills this role. The interaction between the three genes described here suggests new models for cellular and molecular mechanisms underlying exceptional survival and healthy aging that involve lipotoxicity. © 2010 The Authors Aging Cell © 2010 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland
Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study
OBJECTIVES: To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. POPULATION AND METHODS: We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test"), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. RESULTS: 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. CONCLUSIONS: The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service laboratories should consider adopting procedures used in the research laboratory for paediatric urine samples. Primary care clinicians should try to obtain clean catch samples, even in very young children
Descriptive Epidemiology of Serious Work-Related Injuries in British Columbia, Canada
OBJECTIVE: This study examined the rates and distribution of serious work-related injuries by demographic, work and injury characteristics in British Columbia, Canada from 2002-2008, using population-based data. METHODS: Claims for workers with a serious injury were extracted from workers' compensation data. Serious injuries were defined by long duration, high cost, serious medical diagnosis, or fatality. Workforce estimates were used to calculate stratum-specific rates. Rate-ratios (RR) and 95% CIs were calculated using negative binomial regression for the comparison of rates, adjusting for gender, age and occupation. RESULTS: Women had a lower overall serious injury rate compared to men (RR: 0.93, 95% CI: 0.87-0.99). The 35-44 age group had the highest overall rate compared to the youngest age group. The rate for severe strains/sprains was similarly high for men and women in the 35-44 age group, although there was a differential pattern by gender for other injury types: the rate of fracture was similar across age groups for men, but increased with age for women (RR: 2.7, 95% CI: 2.2-3.3); and the rate of severe falls increased with age for men and women, with a larger three-fold increase for older women (men: RR: 1.8, 95% CI: 1.7-2.1; women: RR: 3.2, 95% CI: 2.7-3.7). CONCLUSIONS: The risk of serious injuries is higher among specific age groups with different patterns emerging for men and women. Variations persisted within similar injury types and occupation groups in our adjusted models. These results provide evidence for the burden of serious injuries and a basis for future analytic research. Given projected demographic shifts and increasing workforce participation of older workers, intervention programs should be carefully implemented with consideration to demographic groups at risk for serious injuries in the workplace
- …