134 research outputs found

    Non-Canonicaly Recruited TCRαβCD8αα IELs Recognize Microbial Antigens

    Get PDF
    In the gut, various subsets of intraepithelial T cells (IELs) respond to self or non-self-antigens derived from the body, diet, commensal and pathogenic microbiota. Dominant subset of IELs in the small intestine are TCRαβCD8αα+ cells, which are derived from immature thymocytes that express self-reactive TCRs. Although most of TCRαβCD8αα+ IELs are thymus-derived, their repertoire adapts to microbial flora. Here, using high throughput TCR sequencing we examined how clonal diversity of TCRαβCD8αα+ IELs changes upon exposure to commensal-derived antigens. We found that fraction of CD8αα+ IELs and CD4+ T cells express identical αβTCRs and this overlap raised parallel to a surge in the diversity of microbial flora. We also found that an opportunistic pathogen (Staphylococcus aureus) isolated from mouse small intestine specifically activated CD8αα+ IELs and CD4+ derived T cell hybridomas suggesting that some of TCRαβCD8αα+ clones with microbial specificities have extrathymic origin. We also report that CD8ααCD4+ IELs and Foxp3CD4+ T cells from the small intestine shared many αβTCRs, regardless whether the later subset was isolated from Foxp3CNS1 sufficient or Foxp3CNS1 deficient mice that lacks peripherally-derived Tregs. Overall, our results imply that repertoire of TCRαβCD8αα+ in small intestine expends in situ in response to changes in microbial flora

    Atlantic Salmon Reovirus Infection Causes a CD8 T Cell Myocarditis in Atlantic Salmon (Salmo salar L.)

    Get PDF
    Heart and skeletal inflammation (HSMI) of farmed Atlantic salmon (Salmo salar L.) is a disease characterized by a chronic myocarditis involving the epicardium and the compact and spongious part of the heart ventricle. Chronic myositis of the red skeletal muscle is also a typical finding of HSMI. Piscine reovirus (PRV) has been detected by real-time PCR from farmed and wild salmon with and without typical changes of HSMI and thus the causal relationship between presence of virus and the disease has not been fully determined [1]. In this study we show that the Atlantic salmon reovirus (ASRV), identical to PRV, can be passaged in GF-1 cells and experimental challenge of naïve Atlantic salmon with cell culture passaged reovirus results in cardiac and skeletal muscle pathology typical of HSMI with onset of pathology from 6 weeks, peaking by 9 weeks post challenge. ASRV replicates in heart tissue and the peak level of virus replication coincides with peak of heart lesions. We further demonstrate mRNA transcript assessment and in situ characterization that challenged fish develop a CD8+ T cell myocarditis

    γδ T Cells Are Reduced and Rendered Unresponsive by Hyperglycemia and Chronic TNFα in Mouse Models of Obesity and Metabolic Disease

    Get PDF
    Epithelial cells provide an initial line of defense against damage and pathogens in barrier tissues such as the skin; however this balance is disrupted in obesity and metabolic disease. Skin γδ T cells recognize epithelial damage, and release cytokines and growth factors that facilitate wound repair. We report here that hyperglycemia results in impaired skin γδ T cell proliferation due to altered STAT5 signaling, ultimately resulting in half the number of γδ T cells populating the epidermis. Skin γδ T cells that overcome this hyperglycemic state are unresponsive to epithelial cell damage due to chronic inflammatory mediators, including TNFα. Cytokine and growth factor production at the site of tissue damage was partially restored by administering neutralizing TNFα antibodies in vivo. Thus, metabolic disease negatively impacts homeostasis and functionality of skin γδ T cells, rendering host defense mechanisms vulnerable to injury and infection

    Transcriptional reprogramming of mature CD4 + helper T cells generates distinct MHC class II- restricted cytotoxic T lymphocytes

    Get PDF
    2 8 1 CD4 + T cells are commonly classified as 'helper' T cells on the basis of their roles in providing help to promote or dampen cellular and humoral immune responses. In contrast, CD8αβ + cytotoxic T lympho cytes (CTLs) provide direct protective immunity by killing infected or transformed cells. The helper T cell program is initially induced during thymic development, during which thymocytes expressing a major histocompatibility complex (MHC) class II-reactive T cell antigen receptor (TCR) develop into the CD4 + helper T cell lineage, whereas thymocytes with specificity for MHC class I differentiate into the CD8 + CTL lineage. The functional programming, which coincides with but does not depend on the MHC restriction or expression of the coreceptor CD4 or CD8αβ, is controlled by the action and counter action of key transcription factors. Together with Tox and GATA3, the helper T cell transcription factor ThPOK (cKrox; encoded by Zbtb7b (called 'Thpok' here)) first induces the CD4 + helper T cell fate and prevents thymocytes from differentiating into CD8 + CTLs 1-6 . Runx3, a member of the Runx family of transcription factors, has the opposite effect and terminates CD4 expression while promoting differentiation into the CTL lineage That lineage separation, however, is not all encompassing, and reports have repeatedly indicated the presence of CD4 + T cells with cytolytic functions in various species, including humans and rodent

    More stories on Th17 cells

    Get PDF
    For more than two decades, immunologists have been using the so-called Th1/Th2 paradigm to explain most of the phenomena related to adaptive immunity. the Th1/Th2 paradigm implied the existence of two different, mutually regulated, CD4(+) T helper subsets: Th1 cells, driving cell-mediated immune responses involved in tissue damage and fighting infection against intracellular parasites; and Th2 cells that mediate IgE production and are particularly involved in eosinophilic inflammation, allergy and clearance of helminthic infections. A third member of the T helper set, IL-17-producing CD4(+) T cells, now called Th17 cells, was recently described as a distinct lineage that does not share developmental pathways with either Th1 or Th2 cells. the Th17 subset has been linked to autoimmune disorders, being able to produce IL-17, IL-17F and IL-21 among other inflammatory cytokines. Interestingly, it has been reported that there is not only a cross-regulation among Th1, Th2 and Th17 effector cells but there is also a dichotomy in the generation of Th17 and T regulatory cells. Therefore, Treg and Th17 effector cells arise in a mutually exclusive fashion, depending on whether they are activated in the presence of TGF-beta or TGF-beta plus inflammatory cytokines such as IL-6. This review will address the discovery of the Th17 cells, and recent progress on their development and regulation.Crohn's and Colitis Foundation of AmericaNIHLa Jolla Inst Allergy & Immunol, La Jolla, CA 92037 USAUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Immunol & Parasitol, São Paulo, BrazilNIH: RO1 AI050265-06Web of Scienc

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion

    Foxp3 and Treg cells in HIV-1 infection and immuno-pathogenesis

    Get PDF
    FoxP3+CD4+CD25+ regulatory T (Treg) cells are implicated in a number of pathologic processes including elevated levels in cancers and infectious diseases, and reduced levels in autoimmune diseases. Treg cells are activated to modulate immune responses to avoid over-reactive immunity. However, conflicting findings are reported regarding relative levels of Treg cells during HIV-1 infection and disease progression. The role of Treg cells in HIV-1 diseases (aberrant immune activation) is poorly understood due to lack of a robust model. We summarize here the regulation and function of Foxp3 in Treg cells and in modulating HIV-1 replication. Based on recent findings from SIV/monkey and HIV/humanized mouse models, a model of the dual role of Treg cells in HIV-1 infection and immuno-pathogenesis is discussed
    corecore