306 research outputs found

    E2 strengths and transition radii difference of one-phonon 2+ states of 92Zr from electron scattering at low momentum transfer

    Full text link
    Background: Mixed-symmetry 2+ states in vibrational nuclei are characterized by a sign change between dominant proton and neutron valence-shell components with respect to the fully symmetric 2+ state. The sign can be measured by a decomposition of proton and neutron transition radii with a combination of inelastic electron and hadron scattering [C. Walz et al., Phys. Rev. Lett. 106, 062501 (2011)]. For the case of 92Zr, a difference could be experimentally established for the neutron components, while about equal proton transition radii were indicated by the data. Method: Differential cross sections for the excitation of one-phonon 2+ and 3- states in 92Zr have been measured with the (e,e') reaction at the S-DALINAC in a momentum transfer range q = 0.3-0.6 fm^(-1). Results: Transition strengths B(E2;2+_1 -> 0+_1) = 6.18(23), B(E2; 2+_2 -> 0+_1) = 3.31(10) and B(E3; 3-_1 -> 0+_1) = 18.4(11) Weisskopf units are determined from a comparison of the experimental cross sections to quasiparticle-phonon model (QPM) calculations. It is shown that a model-independent plane wave Born approximation (PWBA) analysis can fix the ratio of B(E2) transition strengths to the 2+_(1,2) states with a precision of about 1%. The method furthermore allows to extract their proton transition radii difference. With the present data -0.12(51) fm is obtained. Conclusions: Electron scattering at low momentum transfers can provide information on transition radii differences of one-phonon 2+ states even in heavy nuclei. Proton transition radii for the 2+_(1,2) states in 92Zr are found to be identical within uncertainties. The g.s. transition probability for the mixed-symmetry state can be determined with high precision limited only by the available experimental information on the B(E2; 2+_1 -> 0+_1) value.Comment: 14 pages, 5 figures, submitted to Phys. Rev. C, revised manuscrip

    Influence of saprophages (Isopoda, Diplopoda) on leaf litter decomposition under different levels of humidification and chemical loading

    Get PDF
    The paper presents a study about the influence of two saprophage groups (Isopoda, Diplopoda) on leaf litter decomposition under different levels of humidification and chemical stress. Because of their worldwide distribution, we focused on the common pillbug Armadillidium vulgare (Latreille, 1804) (Isopoda, Armadillidiidae), and the common millipede species Rossiulus kessleri (Lohmander, 1927) (Julida, Julidae). The function of environment creation by the given saprophages, as destructors of dead plant matter, supporting such ecosystem services as soil fertility improvement and nutrients’ turnover, is highlighted. To conduct the experiment, the animals were collected manually and using pitfall trapping. In order to bring the experimental conditions closer to the natural, the individuals were not sexed. The maximum consumption of leaf litter by woodlice was recorded in the conditions with adequate moisture (0.5 mL of distilled water per box) and amounted to 2.52 mg/10 individuals per day, which exceeds its consumption with low and increased moisture, respectively, by 1.82 and 1.24 times. As for the effect of interaction, the consumption of maple litter with optimal moisture (4.77 mg/10 individuals per day) was the greatest. The largest absolute difference between broad-leaved tree species in the average weight of leaf litter consumed by woodlice was between maple leaf litter and oak leaf litter, the minimum – between robinia leaf litter and oak leaf litter. According to the results of the obtained data (Diplopoda), it can be stated that there is a statistically significant effect of chemical stress and discrepancy of the average zinc content in the object of study (in Diplopoda and their faecal pellets). We found that the diet provided did not affect the distribution of zinc in Diplopoda under conditions of chemical stress. According to the results of pairwise comparisons, we determined that the zinc content in the Diplopoda clearly differs for control and almost every concentration of zinc sulfate solution – 0.03 and 0.15 g/L, the samples of which do not form a homogeneous group. The species composition, abundance and distribution in space of soil invertebrates are informative indicators which reflect the ecological state of soils, intensity in development of soil horizons as well as intensity of processes occurring in them

    A clinical case of linear stromal (interstitial) keratitis

    Get PDF
    Background. Keratitis, characterized by superficial inflammation, cellular infiltration and vascularization of the stroma with minimal involvement of the corneal epithelium and endothelium, is an extremely rare specific condition, that has been isolated, as a separate nosology – linear interstitial keratitis.The aim. Clinical case demonstration of linear stromal keratitis, using modern methods of corneal examination and world literature analysis, devoted to this problem, from the point of view of determining disease etiology.Materials and methods. Case demonstration of linear keratitis in a young patient with a recurrent course of the disease is presented.Results. Π resented clinical case confirms course features and lesion morphology of linear interstitial keratitis.Conclusion. Linear interstitial keratitis is a rare clinical phenomenon, and its etiology remains uncertain. Confocal microscopy is a promising method of studying linear interstitial keratitis in view of best resolution. Coherent tomography of anterior segment of the eye, is uninformative and does not reflect true depth of the pathological process. Mirror microscopy of endothelial cells confirms confocal microscopy data of panstromic process. Herpes simplex virus and pale treponema roles in the development of linear interstitial keratitis has not been confirmed by existing standard laboratory methods

    Assessment of Therapeutic Efficacy of 5% Sodium Hydrocarbonate Solution in Case of Nodular Dermatitis of Cattle

    Get PDF
    This article provides information on studies and evaluations of therapeutic efficacy of 5 % sodium bicarbonate solution in case of nodular dermatitis of cattle. Due to the market expansion of veterinary drugs, the periodization of unusual and new medicines as well as control methods of pathogens of farm livestock, having therapeutic and prophylactic effect, is under permanent control of specialists in the field of veterinary medicine. Recently the importance of finding modern means and methods of dealing with animal diseases aimed at the restoration of the body homeostasis has increased significantly in order to ensure the physiologically normal functioning of many enzymes, hormones and the whole body. There is a need for their rational use based on the study of changes in clinical and biochemical parameters occurring in the body under their influence and other factors contributing to the development of normal physiological status of the body (homeostasis). Based on the above, the present studies were based not only on etiological and pathogenetic, but also sanogenetic ideas about diseases with the aim of choosing the means that form the body’s normal physiological status (body homeostasis restoration), taking into account physiological characteristics of animals, and thereby providing the best medical and prophylactic efficacy [4]. Periodization of new drugs and methods to combat animal diseases that contribute to the restoration of body homeostasis is very important. This importantance has become even more significant since the increased sanitary and hygienic requirements for the use of veterinary drugs in animal husbandry, primarily for the treatment of dairy animals, which will serve as a guarantee for obtaining livestock products safe from the point of view of veterinary and sanitary norms and excellent sanitary quality

    Measurement of the vector and tensor analyzing powers for Dp-elastic scattering at the energy of 800 MeV

    Get PDF
    The vector Ay and tensor analyzing powers Ayy and Axx for dp-elastic scattering were measured at the energy of 800 MeV and at the angular range from 60Β° to 135Β° in the center-of-mass system at the JINR Nuclotron. The experimental data are compared with the calculations obtained within framework of relativistic multiple scattering approac

    Використання Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π² Ρƒ синтСзі Π½ΠΎΠ²ΠΈΡ… 1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4-ΠΎΠ½ 2,2-діоксидів, кондСнсованих Π· ΠΏΡ–Ρ€Π°Π½ΠΎΠ²ΠΈΠΌ ядром Π·Π° допомогою Π΄ΠΎΠΌΡ–Π½ΠΎ-Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΠΉ. Антимікробна Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ синтСзованих сполук

    Get PDF
    Domino-type Knoevenagel-Michael-hetero-Thorpe-Ziegler and Knoevenagel-hetero-Diels-Alder interactions using 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and aliphatic aldehydes as initial compounds have been studied. These reactions have led to 2-amino-3-cyano-4H-pyran and 2H-3,4-dihydropyran derivatives, respectively. It has been shown that the three-component one-pot interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)one 2,2-dioxide with saturated aliphatic aldehydes and malononitrile proceeds under rather mild conditions and results in formation of 2-amino-6-ethyl-4-alkyl-4,6-dihydropyrano[3,2-c][2,1]benzothiazin-3-carbonitrile 5,5-dioxides with moderate and high yields. At the same time, the yields of target products decrease with the increase of the length of the aliphatic aldehyde carbon chain. In this regard, the use of citronellal allowed us to obtain the product of the three-component interaction with a low yield. To date, there is no information in the literature about the possible application of aliphatic dialdehydes in such three-component interactions. It has been found that the use of glutaric aldehyde results in the synthesis of a new class of bis-derivatives of 2-amino-4H-pyran, in which two fragments are linked by the polymethylene bridge. The use of Ξ±,Ξ²-unsaturated aldehydes in the three-component interaction with 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide and malononitrile was accompanied by decrease in the process efficiency compared to saturated aliphatic aldehydes. The target fused 2-amino-3-cyano-4H-pyran was obtained only when Ξ±-methylcinnamic aldehyde was used in the reaction. A two-component interaction of 1-ethyl-1H-2,1-benzothiazin-4(3H)-one 2,2-dioxide with citronellal has been also studied. It has been shown that this reaction is stereospecific. It proceeds through domino Knoevenagel-heteroDiels-Alder sequence resulting in a new heterocyclic system – 2,2a,3,4,5,6,6a,8-octahydroisochromeno[4,3-c] [2,1]benzothiazine 7,7-dioxide. The study of the antimicrobial activity of the compounds synthesized has allowed finding compounds with a moderate activity against P. aeruginosa Ρ– C. albicans.Π˜Π·ΡƒΡ‡Π΅Π½Ρ‹ Π΄ΠΎΠΌΠΈΠ½ΠΎ-взаимодСйствия КнСвСнагСля-ΠœΠΈΡ…Π°ΡΠ»Ρ-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π’ΠΎΡ€ΠΏΠ°-Π¦ΠΈΠ³Π»Π΅Ρ€Π° ΠΈ КнСвСнагСля-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π”ΠΈΠ»ΡŒΡΠ°-ΠΠ»ΡŒΠ΄Π΅Ρ€Π° с участиСм 1-этил-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксида ΠΈ алифатичСских альдСгидов, приводящих соотвСтствСнно ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 2-Π°ΠΌΠΈΠ½ΠΎ-3-Ρ†ΠΈΠ°Π½ΠΎ-4Н-ΠΏΠΈΡ€Π°Π½Π° ΠΈ 2Н-3,4-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΠΏΠΈΡ€Π°Π½Π°. Показано, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ΅ одностадийноС взаимодСйствиС 1-этил-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксида с насыщСнными алифатичСскими альдСгидами ΠΈ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»ΠΎΠΌ ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ Π² ΠΎΡ‡Π΅Π½ΡŒ мягких условиях ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ 2-Π°ΠΌΠΈΠ½ΠΎ-6-этил-4-Π°Π»ΠΊΠΈΠ»-4,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΠΏΠΈΡ€Π°Π½ΠΎ[3,2-c][2,1]Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксидов с высокими ΠΈ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½Ρ‹ΠΌΠΈ Π²Ρ‹Ρ…ΠΎΠ΄Π°ΠΌΠΈ. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π΄Π»ΠΈΠ½Ρ‹ ΡƒΠ³Π»Π΅Ρ€ΠΎΠ΄Π½ΠΎΠΉ Ρ†Π΅ΠΏΠΈ алифатичСских альдСгидов ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ Π²Ρ‹Ρ…ΠΎΠ΄Π° Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ². Π’Π°ΠΊ, ΠΏΡ€ΠΈ использовании цитронСллаля ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ взаимодСйствия ΡƒΠ΄Π°Π»ΠΎΡΡŒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ с нСвысоким Π²Ρ‹Ρ…ΠΎΠ΄ΠΎΠΌ. АлифатичСскиС Π΄ΠΈΠ°Π»ΡŒΠ΄Π΅Π³ΠΈΠ΄Ρ‹ Π½Π΅ Π±Ρ‹Π»ΠΈ Ρ€Π°Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π² Π΄Π°Π½Π½Ρ‹Ρ… взаимодСйствиях; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π³Π»ΡƒΡ‚Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ альдСгида ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π½ΠΎΠ²ΠΎΠΌΡƒ классу бис-ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 2-Π°ΠΌΠΈΠ½ΠΎ-4Н-ΠΏΠΈΡ€Π°Π½Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ‹ соСдинСны ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²Ρ‹ΠΌ мостиком. ИспользованиС Ξ±,Ξ²-нСнасыщСнных альдСгидов Π² Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΌ взаимодСйствии с 1-этил-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксидом ΠΈ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»ΠΎΠΌ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ΠΌ эффСктивности процСсса ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с насыщСнными алифатичСскими альдСгидами. Π¦Π΅Π»Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ взаимодСйствия кондСнсированный 2-Π°ΠΌΠΈΠ½ΠΎ-3-Ρ†ΠΈΠ°Π½ΠΎ-4Н-ΠΏΠΈΡ€Π°Π½ Π±Ρ‹Π» ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² случаС примСнСния Ξ±-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΊΠΎΡ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ альдСгида. Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ взаимодСйствиС ΠΌΠ΅ΠΆΠ΄Ρƒ 1-этил-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½ 2,2-диоксидом ΠΈ Ρ†ΠΈΡ‚Ρ€ΠΎΠ½Π΅Π»Π»Π°Π»Π΅ΠΌ; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ данная рСакция ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π΅Ρ‚ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΊ стСрСо-спСцифичноС Π΄ΠΎΠΌΠΈΠ½ΠΎ-взаимодСйствиС КнСвСнагСля-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π”ΠΈΠ»ΡŒΡΠ°-ΠΠ»ΡŒΠ΄Π΅Ρ€Π° ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡŽ Π½ΠΎΠ²ΠΎΠΉ гСтСроцикличСской систСмы – 2,2a,3,4,5,6,6a,8-ΠΎΠΊΡ‚Π°Π³ΠΈΠ΄Ρ€ΠΎΠΈΠ·ΠΎΡ…Ρ€ΠΎΠΌΠ΅Π½ΠΎ[4,3-c][2,1]Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½ 7,7-диоксида. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности синтСзированных соСдинСний ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰ΠΈΠ΅ ΡƒΠΌΠ΅Ρ€Π΅Π½Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈΠ² P. aeruginosa ΠΈ C. albicansΠ’ΠΈΠ²Ρ‡Π΅Π½Ρ– Π΄ΠΎΠΌΡ–Π½ΠΎ-Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— КньовСнагСля-ΠœΡ–Ρ…Π°Π΅Π»Ρ-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π’ΠΎΡ€ΠΏΠ°-Π¦Ρ–Π³Π»Π΅Ρ€Π° Ρ‚Π° КньовСнагСля-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π”Ρ–Π»ΡŒΡΠ°-ΠΠ»ΡŒΠ΄Π΅Ρ€Π° Π·Π° ΡƒΡ‡Π°ΡΡ‚ΡŽ 1-Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½Ρƒ 2,2-діоксиду Ρ‚Π° Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π², Ρ‰ΠΎ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΡΡ‚ΡŒ Π΄ΠΎ утворСння Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 2-Π°ΠΌΡ–Π½ΠΎ-3-Ρ†Ρ–Π°Π½ΠΎ-4Н-ΠΏΡ–Ρ€Π°Π½Ρƒ Ρ‚Π° 2Н-3,4-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΠΏΡ–Ρ€Π°Π½Ρƒ. Показано, Ρ‰ΠΎ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Π° одностадійна взаємодія 1-Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½Ρƒ 2,2-діоксиду Π· насичСними Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ Ρ– ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»ΠΎΠΌ ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Π°Ρ” Ρƒ Π΄ΡƒΠΆΠ΅ м’яких ΡƒΠΌΠΎΠ²Π°Ρ… Ρ– ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ утворСння 2-Π°ΠΌΡ–Π½ΠΎ-6-Π΅Ρ‚ΠΈΠ»-4-Π°Π»ΠΊΡ–Π»-4,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΠΏΡ–Ρ€Π°Π½ΠΎ[3,2 c][2,1]Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксидів Π· високими Ρ‚Π° ΠΏΠΎΠΌΡ–Ρ€Π½ΠΈΠΌΠΈ Π²ΠΈΡ…ΠΎΠ΄Π°ΠΌΠΈ. Π£ Ρ‚ΠΎΠΉ ΠΆΠ΅ час Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Π΄ΠΎΠ²ΠΆΠΈΠ½ΠΈ Π²ΡƒΠ³Π»Π΅Ρ†Π΅Π²ΠΎΠ³ΠΎ Π»Π°Π½Ρ†ΡŽΠ³Π° Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ змСншСння Π²ΠΈΡ…ΠΎΠ΄Ρƒ Ρ†Ρ–Π»ΡŒΠΎΠ²ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Ρ–Π². Π’Π°ΠΊ, ΠΏΡ€ΠΈ використанні Ρ†ΠΈΡ‚Ρ€ΠΎΠ½Π΅Π»Π°Π»ΡŽ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— вдалося ΠΎΠ΄Π΅Ρ€ΠΆΠ°Ρ‚ΠΈ Ρ‚Ρ–Π»ΡŒΠΊΠΈ Π· нСвисоким Π²ΠΈΡ…ΠΎΠ΄ΠΎΠΌ. Аліфатичні Π΄Ρ–Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄ΠΈ Π½Π΅ Π±ΡƒΠ»ΠΈ Ρ€Π°Π½Ρ–ΡˆΠ΅ використані Ρƒ Π΄Π°Π½ΠΈΡ… взаємодіях; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ використання Π³Π»ΡƒΡ‚Π°Ρ€ΠΎΠ²ΠΎΠ³ΠΎ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ дозволяє ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π½ΠΎΠ²ΠΈΠΉ клас біс-ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 2-Π°ΠΌΡ–Π½ΠΎ-4Н-ΠΏΡ–Ρ€Π°Π½Ρƒ, Π² якому Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΈ з’єднані ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½ΠΎΠ²ΠΈΠΌ містком. Використання Ξ±,Ξ²-нСнасичСних Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π² Ρƒ Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ–ΠΉ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π· 1-Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½Ρƒ 2,2-діоксидом Ρ– ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»ΠΎΠΌ супроводТувалося змСншСнням СфСктивності процСсу Π² порівнянні Π· насичСними Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ. Π¦Ρ–Π»ΡŒΠΎΠ²ΠΈΠΉ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— кондСнсований 2-Π°ΠΌΡ–Π½ΠΎ-3-Ρ†Ρ–Π°Π½ΠΎ-4Н-ΠΏΡ–Ρ€Π°Π½ Π±ΡƒΠ² ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΠΉ Ρ‚Ρ–Π»ΡŒΠΊΠΈ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ застосування Ξ±-ΠΌΠ΅Ρ‚ΠΈΠ»ΠΊΠΎΡ€ΠΈΡ‡Π½ΠΎΠ³ΠΎ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρƒ. Π’ΠΈΠ²Ρ‡Π΅Π½Π° взаємодія ΠΌΡ–ΠΆ 1-Π΅Ρ‚ΠΈΠ»-1Н-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4(3Н)-ΠΎΠ½Ρƒ 2,2-діоксидом Ρ– Ρ†ΠΈΡ‚Ρ€ΠΎΠ½Π΅Π»Π°Π»Π΅ΠΌ; ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‰ΠΎ Ρ‚Π°ΠΊΠ° рСакція ΠΏΠ΅Ρ€Π΅Π±Ρ–Π³Π°Ρ” винятково як стСрСоспСцифічна Π΄ΠΎΠΌΡ–Π½ΠΎ-взаємодія КньовСнагСля-Π³Π΅Ρ‚Π΅Ρ€ΠΎ-Π”Ρ–Π»ΡŒΡΠ°-ΠΠ»ΡŒΠ΄Π΅Ρ€Π° Ρ– ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ утворСння Π½ΠΎΠ²ΠΎΡ— Π³Π΅Ρ‚Π΅Ρ€ΠΎΡ†ΠΈΠΊΠ»Ρ–Ρ‡Π½ΠΎΡ— систСми – 2,2a,3,4,5,6,6a,8-ΠΎΠΊΡ‚Π°Π³Ρ–Π΄Ρ€ΠΎΡ–Π·ΠΎΡ…Ρ€ΠΎΠΌΠ΅Π½ΠΎ[4,3-c][2,1]Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½ 7,7-діоксиду. ВивчСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності синтСзованих сполук Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ виявити ΠΏΠΎΡ…Ρ–Π΄Π½Ρ–, Ρ‰ΠΎ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ΡŒ ΠΏΠΎΠΌΡ–Ρ€Π½Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ‚ΠΈ P. aeruginosa Ρ– C. albicans

    Π‘ΠΈΠ½Ρ‚Π΅Π· ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1,2-бСнзоксатіїн 2,2-діоксиду Π· використанням Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Ρ–Π² Ρ‚Π° дослідТСння Ρ—Ρ… Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності

    Get PDF
    Nowadays the problem of the antimicrobial resistance promotes the search of new chemical core-structures with the antimicrobial properties.Aim. To study the interaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with active methylene nitriles and aliphatic aldehydes and assess the antimicrobial activity of the compounds obtained.Results and discussion. 1,2-Benzoxathiin-4(3H)-one 2,2-dioxide as a structural analog of 1,3-dicarbonyl compounds was used in the three-component interaction with aliphatic aldehydes and active methylene nitriles. In the case of malononitrile the target compounds were formed. When using ethyl cyanoacetate the only isolated product was triethylammonium salt that could be also obtained by the two-component reaction of 1,2-benzoxathiin-4(3H)-one 2,2-dioxide with aliphatic aldehydes. The study of the antimicrobial properties showed the higher activity of the compounds studied than in the reference drugs, especially against gram-positive strains.Experimental part. The series of 2-amino-4-alkyl-4,6-dihydropyrano[3,2-c][2,1]benzoxathiin-3-carbonitrile 5,5-dioxides and triethylammonium 3-[1-(4-hydroxy-2,2-dioxido-1,2-benzoxathiin-3-yl)alkyl]-1,2-benzoxathiin-4-olate 2,2-dioxides was synthesized. The antimicrobial activity of the compounds obtained was determined by the agar β€œwell” diffusion method.Conclusions. It has been shown that 1,2-benzoxathiin-4(3H)-one 2,2-dioxide as a structural analog of 1H-2,1-benzothiazin-4-one 2,2-dioxide can be used in similar three- and two-component reactions, but its reactivity is less due to the replacement of the 1-N-R-group with an O-atom. The novel compounds obtained exceeded the antimicrobial activity of the reference drugs, and were more active against gram-positive bacteria in contrast to isosteric derivatives of 1H-2,1-benzothiazin-4-one 2,2-dioxide that were active against gram-negative strains and fungi.На соврСмСнном этапС ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ рСзистСнтности способствуСт поиску Π½ΠΎΠ²Ρ‹Ρ… молСкулярных структур с Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΌΠΈ свойствами. Β  Β  ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ взаимодСйствиС 1,2-бСнзоксатиин-4(3H)-ΠΎΠ½ 2,2-диоксида с ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ ΠΈ алифатичСскими альдСгидами ΠΈ ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ ΠΈΡ… обсуТдСниС. 1,2-БСнзоксатиин-4(3H)-ΠΎΠ½ 2,2-диоксид ΠΊΠ°ΠΊ структурный Π°Π½Π°Π»ΠΎΠ³ 1,3-Π΄ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ»ΡŒΠ½Ρ‹Ρ… соСдинСний Π±Ρ‹Π» использован Π² Ρ‚Ρ€Π΅Ρ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠΌ взаимодСйствии с алифатичСскими альдСгидами ΠΈ ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ Π½ΠΈΡ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ. Π’ случаС ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½ΠΈΡ‚Ρ€ΠΈΠ»Π° ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Π»ΠΈΡΡŒ Ρ†Π΅Π»Π΅Π²Ρ‹Π΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅. ΠŸΡ€ΠΈ использовании этилцианацСтата СдинствСнным ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠΌ Π±Ρ‹Π»Π° триэтиламмониСвая соль, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Ρ‚Π°ΠΊΠΆΠ΅ Π² случаС Π΄Π²ΡƒΡ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΠ³ΠΎ взаимодСйствия. Π˜Π·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Ρ… свойств ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Ρ‡Π΅ΠΌ Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² сравнСния, особСнно Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΡˆΡ‚Π°ΠΌΠΌΠΎΠ². Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ. Π‘Ρ‹Π» синтСзирован ряд 2-Π°ΠΌΠΈΠ½ΠΎ-4-Π°Π»ΠΊΠΈΠ»-4,6-Π΄ΠΈΠ³ΠΈΠ΄Ρ€ΠΎΠΏΠΈΡ€Π°Π½ΠΎ[3,2-с][2,1] бСнзоксатиин-3-ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΡ‚Ρ€ΠΈΠ» 5,5-диоксидов ΠΈ 3-[1-(4-гидрокси-2 2-диоксидо-1,2-бСнзоксатиин-3-ΠΈΠ»)Π°Π»ΠΊΠΈΠ»]-1,2-бСнзоксатиин-4-ΠΎΠ»Π°Ρ‚ 2,2-диоксидов. Для ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… соСдинСний Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„Ρ„ΡƒΠ·ΠΈΠΈ Π² Π°Π³Π°Ρ€. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. 1,2-БСнзоксатиин-4(3H)-ΠΎΠ½ 2,2-диоксид ΠΊΠ°ΠΊ структурный Π°Π½Π°Π»ΠΎΠ³ 1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4-ΠΎΠ½ 2,2-диоксида Π±Ρ‹Π» использован Π² Ρ‚Ρ€Π΅Ρ…- ΠΈ Π΄Π²ΡƒΡ…ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ‹Ρ… рСакциях, Π½ΠΎ Π΅Π³ΠΎ рСакционная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ оказалась мСньшС Π·Π° счСт Π·Π°ΠΌΠ΅Π½Ρ‹ 1-N-R-Π³Ρ€ΡƒΠΏΠΏΡ‹ Π½Π° Π°Ρ‚ΠΎΠΌ кислорода. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ соСдинСния ΠΏΠΎ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ активности прСвысили ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ сравнСния ΠΈ проявили Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΉ Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ изостСрных ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… 1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚ΠΈΠ°Π·ΠΈΠ½-4-ΠΎΠ½ 2,2-диоксида, Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹Π΅ свойства ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π±Ρ‹Π»ΠΈ связаны с ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰ΠΈΠΌ влияниСм Π½Π° Π³Ρ€Π°ΠΌΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΡˆΡ‚Π°ΠΌΠΌΡ‹ ΠΈ Π³Ρ€ΠΈΠ±Ρ‹.На сучасному Π΅Ρ‚Π°ΠΏΡ– ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— рСзистСнтності сприяє ΠΏΠΎΡˆΡƒΠΊΡƒ Π½ΠΎΠ²ΠΈΡ… молСкулярних структур Π· Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΠΌΠΈ властивостями.ΠœΠ΅Ρ‚ΠΎΡŽ Π΄Π°Π½ΠΎΡ— Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ»ΠΎ дослідити Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–ΡŽ 1,2-бСнзоксатіїн-4(3H)-ΠΎΠ½ 2,2-діоксиду Π· ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ Ρ‚Π° Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ Ρ‚Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– властивості синтСзованих сполук.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. 1,2-БСнзоксатіїн-4(3H)-ΠΎΠ½ 2,2-діоксид як структурний Π°Π½Π°Π»ΠΎΠ³ 1,3-Π΄ΠΈΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Π»ΡŒΠ½ΠΈΡ… сполук Π±ΡƒΠ»ΠΎ використано Π² Ρ‚Ρ€ΠΈΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½Ρ–ΠΉ Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ— Π· Π°Π»Ρ–Ρ„Π°Ρ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ Π°Π»ΡŒΠ΄Π΅Π³Ρ–Π΄Π°ΠΌΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΈΠ»Π΅Π½Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Π½Ρ–Ρ‚Ρ€ΠΈΠ»Π°ΠΌΠΈ. Π£ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ ΠΌΠ°Π»ΠΎΠ½ΠΎΠ΄ΠΈΠ½Ρ–Ρ‚Ρ€ΠΈΠ»Ρƒ ΡƒΡ‚Π²ΠΎΡ€ΡŽΠ²Π°Π»ΠΈΡΡ Ρ†Ρ–Π»ΡŒΠΎΠ²Ρ– ΠΏΠΎΡ…Ρ–Π΄Π½Ρ–. ΠŸΡ€ΠΈ використанні Π΅Ρ‚ΠΈΠ»Ρ†Ρ–Π°Π½ΠΎΠ°Ρ†Π΅Ρ‚Π°Ρ‚Ρƒ Ρ”Π΄ΠΈΠ½ΠΈΠΌ Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΈΠΌ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠΌ Π±ΡƒΠ»Π° Ρ‚Ρ€ΠΈΠ΅Ρ‚ΠΈΠ»Π°ΠΌΠΎΠ½Ρ–Ρ”Π²Π° ΡΡ–Π»ΡŒ, одСрТання якої ΠΌΠΎΠΆΠ»ΠΈΠ²Π΅ Ρ‚Π°ΠΊΠΎΠΆ Ρƒ Π²ΠΈΠΏΠ°Π΄ΠΊΡƒ Π΄Π²ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΎΡ— Π²Π·Π°Ρ”ΠΌΠΎΠ΄Ρ–Ρ—. ВивчСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΡ… властивостСй ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Π²ΠΈΡ‰Ρƒ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, Π½Ρ–ΠΆ Ρƒ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ–Π² порівняння, особливо ΠΏΡ€ΠΎΡ‚ΠΈ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π².Π•ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π° частина. Π‘ΡƒΠ»ΠΎ синтСзовано ряд 2-Π°ΠΌΡ–Π½ΠΎ-4-Π°Π»ΠΊΡ–Π»-4,6-Π΄ΠΈΠ³Ρ–Π΄Ρ€ΠΎΠΏΡ–Ρ€Π°Π½ΠΎ[3,2-с][2,1]бСнзоксатіїн-3-ΠΊΠ°Ρ€Π±ΠΎΠ½Ρ–Ρ‚Ρ€ΠΈΠ» 5,5-діоксидів Ρ‚Π° 3-[1-(4-гідрокси-2,2-діоксидо-1,2-бСнзоксатіїн-3-Ρ–Π»)Π°Π»ΠΊΡ–Π»]-1,2-бСнзоксатіїн-4- ΠΎΠ»Π°Ρ‚ 2,2-діоксидів. Для ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡ… сполук Π±ΡƒΠ»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ визначСння Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— активності ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π΄ΠΈΡ„ΡƒΠ·Ρ–Ρ— Π² Π°Π³Π°Ρ€.Висновки. 1,2-БСнзоксатіїн-4(3H)-ΠΎΠ½ 2,2-діоксид як структурний Π°Π½Π°Π»ΠΎΠ³ 1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4-ΠΎΠ½ 2,2-діоксиду Π±ΡƒΠ² використаний Ρƒ Ρ‚Ρ€ΠΈ- Ρ‚Π° Π΄Π²ΠΎΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π½ΠΈΡ… рСакціях, Π°Π»Π΅ ΠΉΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ†Ρ–ΠΉΠ½Π° Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ виявилась мСншою Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ Π·Π°ΠΌΡ–Π½ΠΈ 1-N-R-Π³Ρ€ΡƒΠΏΠΈ Π½Π° Π°Ρ‚ΠΎΠΌ кисню. ΠžΠ΄Π΅Ρ€ΠΆΠ°Π½Ρ– сполуки Π·Π° Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŽ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΠΈΠ»ΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ порівняння Ρ‚Π° виявились Π±Ρ–Π»ΡŒΡˆ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΌΠΈ Ρ‰ΠΎΠ΄ΠΎ Π³Ρ€Π°ΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΈΡ… ΡˆΡ‚Π°ΠΌΡ–Π² ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π½Π° Π²Ρ–Π΄ΠΌΡ–Π½Ρƒ Π²Ρ–Π΄ ізостСрних ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… 1H-2,1-Π±Π΅Π½Π·ΠΎΡ‚Ρ–Π°Π·ΠΈΠ½-4-ΠΎΠ½ 2,2-діоксиду, Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρ– властивості яких Π±ΡƒΠ»ΠΈ пов’язані Π· Ρ–Π½Π³Ρ–Π±ΡƒΡŽΡ‡ΠΈΠΌ Π²ΠΏΠ»ΠΈΠ²ΠΎΠΌ Π½Π° Π³Ρ€Π°ΠΌΠ½Π΅Π³Π°Ρ‚ΠΈΠ²Π½Ρ– ΡˆΡ‚Π°ΠΌΠΈ Ρ‚Π° Π³Ρ€ΠΈΠ±ΠΈ

    Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.Comment: Proceedings of the 35th ICRC 2017, Busan, Kore

    Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex

    Full text link
    The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection.Comment: ARENA2018 proceeding

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9
    • …
    corecore