3,297 research outputs found

    Exponential speed of mixing for skew-products with singularities

    Full text link
    Let f:[0,1]×[0,1]∖1/2→[0,1]×[0,1]f: [0,1]\times [0,1] \setminus {1/2} \to [0,1]\times [0,1] be the C∞C^\infty endomorphism given by f(x,y)=(2x−[2x],y+c/∣x−1/2∣−[y+c/∣x−1/2∣]),f(x,y)=(2x- [2x], y+ c/|x-1/2|- [y+ c/|x-1/2|]), where cc is a positive real number. We prove that ff is topologically mixing and if c>1/4c>1/4 then ff is mixing with respect to Lebesgue measure. Furthermore we prove that the speed of mixing is exponential.Comment: 23 pages, 3 figure

    Beam propagation in a Randomly Inhomogeneous Medium

    Full text link
    An integro-differential equation describing the angular distribution of beams is analyzed for a medium with random inhomogeneities. Beams are trapped because inhomogeneities give rise to wave localization at random locations and random times. The expressions obtained for the mean square deviation from the initial direction of beam propagation generalize the "3/2 law".Comment: 4 page

    Circularly polarized modes in magnetized spin plasmas

    Full text link
    The influence of the intrinsic spin of electrons on the propagation of circularly polarized waves in a magnetized plasma is considered. New eigenmodes are identified, one of which propagates below the electron cyclotron frequency, one above the spin-precession frequency, and another close to the spin-precession frequency.\ The latter corresponds to the spin modes in ferromagnets under certain conditions. In the nonrelativistic motion of electrons, the spin effects become noticeable even when the external magnetic field B0B_{0} is below the quantum critical\ magnetic field strength, i.e., B0<B_{0}< BQ=4.4138×109 TB_{Q} =4.4138\times10^{9}\, \mathrm{T} and the electron density satisfies n0≫nc≃1032n_{0} \gg n_{c}\simeq10^{32}m−3^{-3}. The importance of electron spin (paramagnetic) resonance (ESR) for plasma diagnostics is discussed.Comment: 10 page

    From Discrete Hopping to Continuum Modeling on Vicinal Surfaces with Applications to Si(001) Electromigration

    Full text link
    Coarse-grained modeling of dynamics on vicinal surfaces concentrates on the diffusion of adatoms on terraces with boundary conditions at sharp steps, as first studied by Burton, Cabrera and Frank (BCF). Recent electromigration experiments on vicinal Si surfaces suggest the need for more general boundary conditions in a BCF approach. We study a discrete 1D hopping model that takes into account asymmetry in the hopping rates in the region around a step and the finite probability of incorporation into the solid at the step site. By expanding the continuous concentration field in a Taylor series evaluated at discrete sites near the step, we relate the kinetic coefficients and permeability rate in general sharp step models to the physically suggestive parameters of the hopping models. In particular we find that both the kinetic coefficients and permeability rate can be negative when diffusion is faster near the step than on terraces. These ideas are used to provide an understanding of recent electromigration experiment on Si(001) surfaces where step bunching is induced by an electric field directed at various angles to the steps.Comment: 10 pages, 4 figure

    Oseledets' Splitting of Standard-like Maps

    Get PDF
    For the class of differentiable maps of the plane and, in particular, for standard-like maps (McMillan form), a simple relation is shown between the directions of the local invariant manifolds of a generic point and its contribution to the finite-time Lyapunov exponents (FTLE) of the associated orbit. By computing also the point-wise curvature of the manifolds, we produce a comparative study between local Lyapunov exponent, manifold's curvature and splitting angle between stable/unstable manifolds. Interestingly, the analysis of the Chirikov-Taylor standard map suggests that the positive contributions to the FTLE average mostly come from points of the orbit where the structure of the manifolds is locally hyperbolic: where the manifolds are flat and transversal, the one-step exponent is predominantly positive and large; this behaviour is intended in a purely statistical sense, since it exhibits large deviations. Such phenomenon can be understood by analytic arguments which, as a by-product, also suggest an explicit way to point-wise approximate the splitting.Comment: 17 pages, 11 figure
    • …
    corecore