589 research outputs found

    Geometrical Description of Quantum Mechanics - Transformations and Dynamics

    Full text link
    In this paper we review a proposed geometrical formulation of quantum mechanics. We argue that this geometrization makes available mathematical methods from classical mechanics to the quantum frame work. We apply this formulation to the study of separability and entanglement for states of composite quantum systems.Comment: 22 pages, to be published in Physica Script

    Dynamics and Lax-Phillips scattering for generalized Lamb models

    Full text link
    This paper treats the dynamics and scattering of a model of coupled oscillating systems, a finite dimensional one and a wave field on the half line. The coupling is realized producing the family of selfadjoint extensions of the suitably restricted self-adjoint operator describing the uncoupled dynamics. The spectral theory of the family is studied and the associated quadratic forms constructed. The dynamics turns out to be Hamiltonian and the Hamiltonian is described, including the case in which the finite dimensional systems comprises nonlinear oscillators; in this case the dynamics is shown to exist as well. In the linear case the system is equivalent, on a dense subspace, to a wave equation on the half line with higher order boundary conditions, described by a differential polynomial p(∂x)p(\partial_x) explicitely related to the model parameters. In terms of such structure the Lax-Phillips scattering of the system is studied. In particular we determine the incoming and outgoing translation representations, the scattering operator, which turns out to be unitarily equivalent to the multiplication operator given by the rational function −p(iÎș)∗/p(iÎș)-p(i\kappa)^*/p(i\kappa), and the Lax-Phillips semigroup, which describes the evolution of the states which are neither incoming in the past nor outgoing in the future

    On perturbations of Dirac operators with variable magnetic field of constant direction

    Full text link
    We carry out the spectral analysis of matrix valued perturbations of 3-dimensional Dirac operators with variable magnetic field of constant direction. Under suitable assumptions on the magnetic field and on the pertubations, we obtain a limiting absorption principle, we prove the absence of singular continuous spectrum in certain intervals and state properties of the point spectrum. Various situations, for example when the magnetic field is constant, periodic or diverging at infinity, are covered. The importance of an internal-type operator (a 2-dimensional Dirac operator) is also revealed in our study. The proofs rely on commutator methods.Comment: 12 page

    Bosonization method for second super quantization

    Full text link
    A bosonic-fermionic correspondence allows an analytic definition of functional super derivative, in particular, and a bosonic functional calculus, in general, on Bargmann- Gelfand triples for the second super quantization. A Feynman integral for the super transformation matrix elements in terms of bosonic anti-normal Berezin symbols is rigorously constructed.Comment: In memoriam of F. A. Berezin, accepted in Journal of Nonlinear Mathematical Physics, 15 page

    Essential self-adjointness in one-loop quantum cosmology

    Full text link
    The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which corrects section

    Spectral properties on a circle with a singularity

    Full text link
    We investigate the spectral and symmetry properties of a quantum particle moving on a circle with a pointlike singularity (or point interaction). We find that, within the U(2) family of the quantum mechanically allowed distinct singularities, a U(1) equivalence (of duality-type) exists, and accordingly the space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus. We explore the relationship of special subfamilies of the U(2) family to corresponding symmetries, and identify the singularities that admit an N = 2 supersymmetry. Subfamilies that are distinguished in the spectral properties or the WKB exactness are also pointed out. The spectral and symmetry properties are also studied in the context of the circle with two singularities, which provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update

    Trading quantum for classical resources in quantum data compression

    Get PDF
    We study the visible compression of a source E of pure quantum signal states, or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade--off curve Q(R), where Q(R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade--off function by a simple formula in terms of only single signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parameterized states. We also show that our result leads to a number of corollaries characterizing the trade--off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so--called remote state preparation problem. Finally, we develop a probability--free version of our main result which may be interpreted as an answer to the question: ``How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits.Comment: 51 pages, 7 figure

    Qualitative Properties of the Dirac Equation in a Central Potential

    Get PDF
    The Dirac equation for a massive spin-1/2 field in a central potential V in three dimensions is studied without fixing a priori the functional form of V. The second-order equations for the radial parts of the spinor wave function are shown to involve a squared Dirac operator for the free case, whose essential self-adjointness is proved by using the Weyl limit point-limit circle criterion, and a `perturbation' resulting from the potential. One then finds that a potential of Coulomb type in the Dirac equation leads to a potential term in the above second-order equations which is not even infinitesimally form-bounded with respect to the free operator. Moreover, the conditions ensuring essential self-adjointness of the second-order operators in the interacting case are changed with respect to the free case, i.e. they are expressed by a majorization involving the parameter in the Coulomb potential and the angular momentum quantum number. The same methods are applied to the analysis of coupled eigenvalue equations when the anomalous magnetic moment of the electron is not neglected.Comment: 22 pages, plain Tex. In the final version, a section has been added, and the presentation has been improve

    Homoclinic chaos in the dynamics of a general Bianchi IX model

    Get PDF
    The dynamics of a general Bianchi IX model with three scale factors is examined. The matter content of the model is assumed to be comoving dust plus a positive cosmological constant. The model presents a critical point of saddle-center-center type in the finite region of phase space. This critical point engenders in the phase space dynamics the topology of stable and unstable four dimensional tubes R×S3R \times S^3, where RR is a saddle direction and S3S^3 is the manifold of unstable periodic orbits in the center-center sector. A general characteristic of the dynamical flow is an oscillatory mode about orbits of an invariant plane of the dynamics which contains the critical point and a Friedmann-Robertson-Walker (FRW) singularity. We show that a pair of tubes (one stable, one unstable) emerging from the neighborhood of the critical point towards the FRW singularity have homoclinic transversal crossings. The homoclinic intersection manifold has topology R×S2R \times S^2 and is constituted of homoclinic orbits which are bi-asymptotic to the S3S^3 center-center manifold. This is an invariant signature of chaos in the model, and produces chaotic sets in phase space. The model also presents an asymptotic DeSitter attractor at infinity and initial conditions sets are shown to have fractal basin boundaries connected to the escape into the DeSitter configuration (escape into inflation), characterizing the critical point as a chaotic scatterer.Comment: 11 pages, 6 ps figures. Accepted for publication in Phys. Rev.

    Sound archaeology: terminology, Palaeolithic cave art and the soundscape

    Get PDF
    This article is focused on the ways that terminology describing the study of music and sound within archaeology has changed over time, and how this reflects developing methodologies, exploring the expectations and issues raised by the use of differing kinds of language to define and describe such work. It begins with a discussion of music archaeology, addressing the problems of using the term ‘music’ in an archaeological context. It continues with an examination of archaeoacoustics and acoustics, and an emphasis on sound rather than music. This leads on to a study of sound archaeology and soundscapes, pointing out that it is important to consider the complete acoustic ecology of an archaeological site, in order to identify its affordances, those possibilities offered by invariant acoustic properties. Using a case study from northern Spain, the paper suggests that all of these methodological approaches have merit, and that a project benefits from their integration
    • 

    corecore