We investigate the spectral and symmetry properties of a quantum particle
moving on a circle with a pointlike singularity (or point interaction). We find
that, within the U(2) family of the quantum mechanically allowed distinct
singularities, a U(1) equivalence (of duality-type) exists, and accordingly the
space of distinct spectra is U(1) x [SU(2)/U(1)], topologically a filled torus.
We explore the relationship of special subfamilies of the U(2) family to
corresponding symmetries, and identify the singularities that admit an N = 2
supersymmetry. Subfamilies that are distinguished in the spectral properties or
the WKB exactness are also pointed out. The spectral and symmetry properties
are also studied in the context of the circle with two singularities, which
provides a useful scheme to discuss the symmetry properties on a general basis.Comment: TeX, 26 pages. v2: one reference added and two update