663 research outputs found

    Vacuum energy induced by an impenetrable flux tube of finite radius

    Full text link
    We consider the effect of the magnetic field background in the form of a tube of the finite transverse size on the vacuum of the quantized charged massive scalar field which is subject to the Dirichlet boundary condition at the edge of the tube. The vacuum energy is induced, being periodic in the value of the magnetic flux enclosed in the tube. Our previous study in J. Phys. A: Vol.43, 175401 (2010) is extended to the case of smaller radius of the tube and larger distances from it. The dependence of the vacuum energy density on the distance from the tube and on the coupling to the space-time curvature scalar is comprehensively analyzed.Comment: 11 pages, 8 figures, journal version, abstract extended. arXiv admin note: substantial text overlap with arXiv:0911.287

    Extended Quintessence with non-minimally coupled phantom scalar field

    Full text link
    We investigate evolutional paths of an extended quintessence with a non-minimally coupled phantom scalar field ψ\psi to the Ricci curvature. The dynamical system methods are used to investigate typical regimes of dynamics at the late time. We demonstrate that there are two generic types of evolutional scenarios which approach the attractor (a focus or a node type critical point) in the phase space: the quasi-oscillatory and monotonic trajectories approach to the attractor which represents the FRW model with the cosmological constant. We demonstrate that dynamical system admits invariant two-dimensional submanifold and discussion that which cosmological scenario is realized depends on behavior of the system on the phase plane (ψ,ψ)(\psi, \psi'). We formulate simple conditions on the value of coupling constant ξ\xi for which trajectories tend to the focus in the phase plane and hence damping oscillations around the mysterious value w=1w=-1. We describe this condition in terms of slow-roll parameters calculated at the critical point. We discover that the generic trajectories in the focus-attractor scenario come from the unstable node. It is also investigated the exact form of the parametrization of the equation of state parameter w(z)w(z) (directly determined from dynamics) which assumes a different form for both scenarios.Comment: revtex4, 15 pages, 9 figures; (v2) published versio

    Conformally invariant wave-equations and massless fields in de Sitter spacetime

    Full text link
    Conformally invariant wave equations in de Sitter space, for scalar and vector fields, are introduced in the present paper. Solutions of their wave equations and the related two-point functions, in the ambient space notation, have been calculated. The ``Hilbert'' space structure and the field operator, in terms of coordinate independent de Sitter plane waves, have been defined. The construction of the paper is based on the analyticity in the complexified pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits of these functions are analyzed. The relation between the ambient space notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde

    Theory of gravitation theories: a no-progress report

    Full text link
    Already in the 1970s there where attempts to present a set of ground rules, sometimes referred to as a theory of gravitation theories, which theories of gravity should satisfy in order to be considered viable in principle and, therefore, interesting enough to deserve further investigation. From this perspective, an alternative title of the present paper could be ``why are we still unable to write a guide on how to propose viable alternatives to general relativity?''. Attempting to answer this question, it is argued here that earlier efforts to turn qualitative statements, such as the Einstein Equivalence Principle, into quantitative ones, such as the metric postulates, stand on rather shaky grounds -- probably contrary to popular belief -- as they appear to depend strongly on particular representations of the theory. This includes ambiguities in the identification of matter and gravitational fields, dependence of frequently used definitions, such as those of the stress-energy tensor or classical vacuum, on the choice of variables, etc. Various examples are discussed and possible approaches to this problem are pointed out. In the course of this study, several common misconceptions related to the various forms of the Equivalence Principle, the use of conformal frames and equivalence between theories are clarified.Comment: Invited paper in the Gravity Research Foundation 2007 special issue to be published by Int. J. Mod. Phys.

    Naturalness in Cosmological Initial Conditions

    Full text link
    We propose a novel approach to the problem of constraining cosmological initial conditions. Within the framework of effective field theory, we classify initial conditions in terms of boundary terms added to the effective action describing the cosmological evolution below Planckian energies. These boundary terms can be thought of as spacelike branes which may support extra instantaneous degrees of freedom and extra operators. Interactions and renormalization of these boundary terms allow us to apply to the boundary terms the field-theoretical requirement of naturalness, i.e. stability under radiative corrections. We apply this requirement to slow-roll inflation with non-adiabatic initial conditions, and to cyclic cosmology. This allows us to define in a precise sense when some of these models are fine-tuned. We also describe how to parametrize in a model-independent way non-Gaussian initial conditions; we show that in some cases they are both potentially observable and pass our naturalness requirement.Comment: 35 pages, 8 figure

    Localized Particle States and Dynamics Gravitational Effects

    Full text link
    Scalar particles--i.e., scalar-field excitations--in de Sitter space exhibit behavior unlike either classical particles in expanding space or quantum particles in flat spacetime. Their energies oscillate forever, and their interactions are spread out in energy. Here it is shown that these features characterize not only normal-mode excitations spread out over all space, but localized particles or wave packets as well. Both one-particle and coherent states of a massive, minimally coupled scalar field in de Sitter space, associated with classical wave packets, are constructed explicitly. Their energy expectation values and corresponding Unruh-DeWitt detector response functions are calculated. Numerical evaluation of these quantities for a simple set of classical wave packets clearly displays these novel features. Hence, given the observed accelerating expansion of the Universe, it is possible that observation of an ultralow-mass scalar particle could yield direct confirmation of distinct predictions of quantum field theory in curved spacetime.Comment: 12 pages, 5 figure

    "Massless" vector field in de Sitter Universe

    Get PDF
    In the present work the massless vector field in the de Sitter (dS) space has been quantized. "Massless" is used here by reference to conformal invariance and propagation on the dS light-cone whereas "massive" refers to those dS fields which contract at zero curvature unambiguously to massive fields in Minkowski space. Due to the gauge invariance of the massless vector field, its covariant quantization requires an indecomposable representation of the de Sitter group and an indefinite metric quantization. We will work with a specific gauge fixing which leads to the simplest one among all possible related Gupta-Bleuler structures. The field operator will be defined with the help of coordinate independent de Sitter waves (the modes) which are simple to manipulate and most adapted to group theoretical matters. The physical states characterized by the divergencelessness condition will for instance be easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemanian manifold for the modes and the two-point function.Comment: 33 pages, 3 figure

    Renormalization of initial conditions and the trans-Planckian problem of inflation

    Get PDF
    Understanding how a field theory propagates the information contained in a given initial state is essential for quantifying the sensitivity of the cosmic microwave background to physics above the Hubble scale during inflation. Here we examine the renormalization of a scalar theory with nontrivial initial conditions in the simpler setting of flat space. The renormalization of the bulk theory proceeds exactly as for the standard vacuum state. However, the short distance features of the initial conditions can introduce new divergences which are confined to the surface on which the initial conditions are imposed. We show how the addition of boundary counterterms removes these divergences and induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe

    Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field

    Get PDF
    The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid ( mixture: HCl - 10 % and HF - 3 %) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous

    Worldlines as Wilson Lines

    Full text link
    Gravitational theories do not admit gauge invariant local operators. We study the limits under which there exists a quasi-local description for a class of non-local gravitational observables where a sum over worldlines plays the role of the Wilson line for gauge theory observables. We study non-local corrections to the local description and circumstances where these corrections become large. We find that these operators are quasi-local in flat space and AdS, but fail to be quasi-local in de Sitter space.Comment: 20 page
    corecore