663 research outputs found
Vacuum energy induced by an impenetrable flux tube of finite radius
We consider the effect of the magnetic field background in the form of a tube
of the finite transverse size on the vacuum of the quantized charged massive
scalar field which is subject to the Dirichlet boundary condition at the edge
of the tube. The vacuum energy is induced, being periodic in the value of the
magnetic flux enclosed in the tube. Our previous study in J. Phys. A: Vol.43,
175401 (2010) is extended to the case of smaller radius of the tube and larger
distances from it. The dependence of the vacuum energy density on the distance
from the tube and on the coupling to the space-time curvature scalar is
comprehensively analyzed.Comment: 11 pages, 8 figures, journal version, abstract extended. arXiv admin
note: substantial text overlap with arXiv:0911.287
Extended Quintessence with non-minimally coupled phantom scalar field
We investigate evolutional paths of an extended quintessence with a
non-minimally coupled phantom scalar field to the Ricci curvature. The
dynamical system methods are used to investigate typical regimes of dynamics at
the late time. We demonstrate that there are two generic types of evolutional
scenarios which approach the attractor (a focus or a node type critical point)
in the phase space: the quasi-oscillatory and monotonic trajectories approach
to the attractor which represents the FRW model with the cosmological constant.
We demonstrate that dynamical system admits invariant two-dimensional
submanifold and discussion that which cosmological scenario is realized depends
on behavior of the system on the phase plane . We formulate
simple conditions on the value of coupling constant for which
trajectories tend to the focus in the phase plane and hence damping
oscillations around the mysterious value . We describe this condition in
terms of slow-roll parameters calculated at the critical point. We discover
that the generic trajectories in the focus-attractor scenario come from the
unstable node. It is also investigated the exact form of the parametrization of
the equation of state parameter (directly determined from dynamics)
which assumes a different form for both scenarios.Comment: revtex4, 15 pages, 9 figures; (v2) published versio
Conformally invariant wave-equations and massless fields in de Sitter spacetime
Conformally invariant wave equations in de Sitter space, for scalar and
vector fields, are introduced in the present paper. Solutions of their wave
equations and the related two-point functions, in the ambient space notation,
have been calculated. The ``Hilbert'' space structure and the field operator,
in terms of coordinate independent de Sitter plane waves, have been defined.
The construction of the paper is based on the analyticity in the complexified
pseudo-Riemanian manifold, presented first by Bros et al.. Minkowskian limits
of these functions are analyzed. The relation between the ambient space
notation and the intrinsic coordinates is then studied in the final stage.Comment: 21 pages, LaTeX, some details adde
Theory of gravitation theories: a no-progress report
Already in the 1970s there where attempts to present a set of ground rules,
sometimes referred to as a theory of gravitation theories, which theories of
gravity should satisfy in order to be considered viable in principle and,
therefore, interesting enough to deserve further investigation. From this
perspective, an alternative title of the present paper could be ``why are we
still unable to write a guide on how to propose viable alternatives to general
relativity?''. Attempting to answer this question, it is argued here that
earlier efforts to turn qualitative statements, such as the Einstein
Equivalence Principle, into quantitative ones, such as the metric postulates,
stand on rather shaky grounds -- probably contrary to popular belief -- as they
appear to depend strongly on particular representations of the theory. This
includes ambiguities in the identification of matter and gravitational fields,
dependence of frequently used definitions, such as those of the stress-energy
tensor or classical vacuum, on the choice of variables, etc. Various examples
are discussed and possible approaches to this problem are pointed out. In the
course of this study, several common misconceptions related to the various
forms of the Equivalence Principle, the use of conformal frames and equivalence
between theories are clarified.Comment: Invited paper in the Gravity Research Foundation 2007 special issue
to be published by Int. J. Mod. Phys.
Naturalness in Cosmological Initial Conditions
We propose a novel approach to the problem of constraining cosmological
initial conditions. Within the framework of effective field theory, we classify
initial conditions in terms of boundary terms added to the effective action
describing the cosmological evolution below Planckian energies. These boundary
terms can be thought of as spacelike branes which may support extra
instantaneous degrees of freedom and extra operators. Interactions and
renormalization of these boundary terms allow us to apply to the boundary terms
the field-theoretical requirement of naturalness, i.e. stability under
radiative corrections. We apply this requirement to slow-roll inflation with
non-adiabatic initial conditions, and to cyclic cosmology. This allows us to
define in a precise sense when some of these models are fine-tuned. We also
describe how to parametrize in a model-independent way non-Gaussian initial
conditions; we show that in some cases they are both potentially observable and
pass our naturalness requirement.Comment: 35 pages, 8 figure
Localized Particle States and Dynamics Gravitational Effects
Scalar particles--i.e., scalar-field excitations--in de Sitter space exhibit
behavior unlike either classical particles in expanding space or quantum
particles in flat spacetime. Their energies oscillate forever, and their
interactions are spread out in energy. Here it is shown that these features
characterize not only normal-mode excitations spread out over all space, but
localized particles or wave packets as well. Both one-particle and coherent
states of a massive, minimally coupled scalar field in de Sitter space,
associated with classical wave packets, are constructed explicitly. Their
energy expectation values and corresponding Unruh-DeWitt detector response
functions are calculated. Numerical evaluation of these quantities for a simple
set of classical wave packets clearly displays these novel features. Hence,
given the observed accelerating expansion of the Universe, it is possible that
observation of an ultralow-mass scalar particle could yield direct confirmation
of distinct predictions of quantum field theory in curved spacetime.Comment: 12 pages, 5 figure
"Massless" vector field in de Sitter Universe
In the present work the massless vector field in the de Sitter (dS) space has
been quantized. "Massless" is used here by reference to conformal invariance
and propagation on the dS light-cone whereas "massive" refers to those dS
fields which contract at zero curvature unambiguously to massive fields in
Minkowski space. Due to the gauge invariance of the massless vector field, its
covariant quantization requires an indecomposable representation of the de
Sitter group and an indefinite metric quantization. We will work with a
specific gauge fixing which leads to the simplest one among all possible
related Gupta-Bleuler structures. The field operator will be defined with the
help of coordinate independent de Sitter waves (the modes) which are simple to
manipulate and most adapted to group theoretical matters. The physical states
characterized by the divergencelessness condition will for instance be easy to
identify. The whole construction is based on analyticity requirements in the
complexified pseudo-Riemanian manifold for the modes and the two-point
function.Comment: 33 pages, 3 figure
Renormalization of initial conditions and the trans-Planckian problem of inflation
Understanding how a field theory propagates the information contained in a
given initial state is essential for quantifying the sensitivity of the cosmic
microwave background to physics above the Hubble scale during inflation. Here
we examine the renormalization of a scalar theory with nontrivial initial
conditions in the simpler setting of flat space. The renormalization of the
bulk theory proceeds exactly as for the standard vacuum state. However, the
short distance features of the initial conditions can introduce new divergences
which are confined to the surface on which the initial conditions are imposed.
We show how the addition of boundary counterterms removes these divergences and
induces a renormalization group flow in the space of initial conditions.Comment: 22 pages, 4 eps figures, uses RevTe
Core acid treatment influence on well reservoir properties in Kazan oil-gas condensate field
The research involves investigation of the influence of hydrochloric acid (HCI-12%) and mud acid ( mixture: HCl - 10 % and HF - 3 %) treatment on the Upper-Jurassic reservoir properties in Kazan oil-gas condensate field wells. The sample collection included three lots of core cylinders from one and the same depth (all in all 42). Two lots of core cylinders were distributed as following: first lot - reservoir properties were determined, and, then thin sections were cut off from cylinder faces; second lot- core cylinders were exposed to hydrochloric acid treatment, then, after flushing the reservoir properties were determined, and thin sections were prepared. Based on the quantitative petrographic rock analysis, involvin 42 thin sections, the following factors were determined: granulometric mineral composition, cement content, intergranular contacts and pore space structure. According to the comparative analysis of initial samples, the following was determined: content decrease of feldspar, clay and mica fragments, mica, clay and carbonate cement; increase of pore spaces while in the investigated samples- on exposure of rocks to acids effective porosity and permeability value range is ambiguous
Worldlines as Wilson Lines
Gravitational theories do not admit gauge invariant local operators. We study
the limits under which there exists a quasi-local description for a class of
non-local gravitational observables where a sum over worldlines plays the role
of the Wilson line for gauge theory observables. We study non-local corrections
to the local description and circumstances where these corrections become
large. We find that these operators are quasi-local in flat space and AdS, but
fail to be quasi-local in de Sitter space.Comment: 20 page
- …