894 research outputs found
Broken parity and a chiral ground state in the frustrated magnet CdCr2O4
We present a model describing the lattice distortion and incommensurate
magnetic order in the spinel CdCr2O4, a good realization of the Heisenberg
"pyrochlore" antiferromagnet. The magnetic frustration is relieved through the
spin-Peierls distortion of the lattice involving a phonon doublet with odd
parity. The distortion stablizes a collinear magnetic order with the
propagation wavevector q=2\pi(0,0,1). The lack of inversion symmetry makes the
crystal structure chiral. The handedness is transferred to magnetic order by
the relativistic spin-orbit coupling: the collinear state is twisted into a
long spiral with the spins in the ac plane and q shifted to 2\pi(0,\delta,1).Comment: Incremental changes in response to referee report
Oscillatons formed by non linear gravity
Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG)
equations that are globally regular and asymptotically flat. By means of a
Legendre transformation we are able to visualize the behaviour of the
corresponding objects in non-linear gravity where the scalar field has been
absorbed by means of the conformal mapping.Comment: Revtex file, 6 pages, 3 eps figure; matches version published in PR
Generalized pulse equations for through-transmission evaluation of arbitrary multilayered structures
Generalized transit time and pulse amplitude equations were derived for modelling the ultrasonic through-transmission wave propagation of an arbitrary n-layered structure. The equations can be programmed into an expert system and used to identify and predict the through-transmission pulse signals from the critical interfaces of a multilayered structure. To test the formulas, the through transmission was measured from one- and three-layered configurations in the laboratory. The experimental measurements were compared with computer-generated data determined using the derived equations. The results verify the validity of the formulas
Self-gravitating branes of codimension 4 in Lovelock gravity
We construct a familly of exact solutions of Lovelock equations describing
codimension four branes with discrete symmetry in the transverse space. Unlike
what is known from pure Einstein gravity, where such brane solutions of higher
codimension are singular, the solutions we find, for the complete Lovelock
theory, only present removable singularities. The latter account for a
localised tension-like energy-momentum tensor on the brane, in analogy with the
case of a codimension two self-gravitating cosmic string in pure Einstein
gravity. However, the solutions we discuss present two main distinctive
features : the tension of the brane receives corrections from the induced
curvature of the brane's worldsheet and, in a given Lovelock theory, the
spectrum of possible values of the tension is discrete. These solutions provide
a new framework for the study of higher codimension braneworlds.Comment: 22 page
In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD
Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology
Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice
Glycolate oxidase (GLO) is a key enzyme in photorespiration, catalyzing the oxidation of glycolate to glyoxylate. Arabidopsis GLO is required for nonhost defense responses to Pseudomonas syringae and for tobacco Pto/AvrPto-mediated defense responses. We previously described identification of rice GLO1 that interacts with a glutaredoxin protein, which in turn interacts with TGA transcription factors. TGA transcription factors are well known to participate in NPR1/NH1-mediated defense signaling, which is crucial to systemic acquired resistance in plants. Here we demonstrate that reduction of rice GLO1 expression leads to enhanced resistance to Xanthomonas oryzae pv oryzae (Xoo). Constitutive silencing of GLO1 leads to programmed cell death, resulting in a lesion-mimic phenotype and lethality or reduced plant growth and development, consistent with previous reports. Inducible silencing of GLO1, employing a dexamethasone-GVG (Gal4 DNA binding domain-VP16 activation domain-glucocorticoid receptor fusion) inducible system, alleviates these detrimental effects. Silencing of GLO1 results in enhanced resistance to Xoo, increased expression of defense regulators NH1, NH3, and WRKY45, and activation of PR1 expression
The causal structure of spacetime is a parameterized Randers geometry
There is a by now well-established isomorphism between stationary
4-dimensional spacetimes and 3-dimensional purely spatial Randers geometries -
these Randers geometries being a particular case of the more general class of
3-dimensional Finsler geometries. We point out that in stably causal
spacetimes, by using the (time-dependent) ADM decomposition, this result can be
extended to general non-stationary spacetimes - the causal structure (conformal
structure) of the full spacetime is completely encoded in a parameterized
(time-dependent) class of Randers spaces, which can then be used to define a
Fermat principle, and also to reconstruct the null cones and causal structure.Comment: 8 page
Hamiltonian analysis of Poincar\'e gauge theory scalar modes
The Hamiltonian constraint formalism is used to obtain the first explicit
complete analysis of non-trivial viable dynamic modes for the Poincar\'e gauge
theory of gravity. Two modes with propagating spin-zero torsion are analyzed.
The explicit form of the Hamiltonian is presented. All constraints are obtained
and classified. The Lagrange multipliers are derived. It is shown that a
massive spin- mode has normal dynamical propagation but the associated
massless is pure gauge. The spin- mode investigated here is also
viable in general. Both modes exhibit a simple type of ``constraint
bifurcation'' for certain special field/parameter values.Comment: 28 pages, LaTex, submitted to International Journal of Modern Physics
Anti-self-dual Riemannian metrics without Killing vectors, can they be realized on K3?
Explicit Riemannian metrics with Euclidean signature and anti-self dual
curvature that do not admit any Killing vectors are presented. The metric and
the Riemann curvature scalars are homogenous functions of degree zero in a
single real potential and its derivatives. The solution for the potential is a
sum of exponential functions which suggests that for the choice of a suitable
domain of coordinates and parameters it can be the metric on a compact
manifold. Then, by the theorem of Hitchin, it could be a class of metrics on
, or on surfaces whose universal covering is .Comment: Misprints in eqs.(9-11) corrected. Submitted to Classical and Quantum
Gravit
- …