1,206 research outputs found

    Seismic Safety Analysis of Earth Dam — Case History Studies

    Get PDF
    The method of seismic safety analysis for earth dam was examined by using actual performances of earth dams during the Chi-Chi Earthquake. Results of analysis under design earthquakes were also collected and compared with the performance records of earth dams. From the results of these studies, it appears that the Seed-Lee-Idriss approach can provide reasonable predictions on the dynamic responses and post-earthquake performance of well-compacted earth dam

    Broken parity and a chiral ground state in the frustrated magnet CdCr2O4

    Get PDF
    We present a model describing the lattice distortion and incommensurate magnetic order in the spinel CdCr2O4, a good realization of the Heisenberg "pyrochlore" antiferromagnet. The magnetic frustration is relieved through the spin-Peierls distortion of the lattice involving a phonon doublet with odd parity. The distortion stablizes a collinear magnetic order with the propagation wavevector q=2\pi(0,0,1). The lack of inversion symmetry makes the crystal structure chiral. The handedness is transferred to magnetic order by the relativistic spin-orbit coupling: the collinear state is twisted into a long spiral with the spins in the ac plane and q shifted to 2\pi(0,\delta,1).Comment: Incremental changes in response to referee report

    Tunneling in Squeezing Ground

    Get PDF
    A criterion for identifying the squeezing potential of tunnel is proposed. Tunneling conditions, classified as slightly or non-squeezing, moderately squeezing and highly squeezing, were identified by relating the strength-stress (σcm/Po ) ratio to the development of plastic zone extent and the amount of tunnel closure. Actual case histories of tunneling in Taiwan show that this criterion predicts the tunnel performance quite well. This enables the identification of tunneling conditions expected which require special considerations in support design and excavation-support procedures

    Performance of a Large Diameter Tunnel in Weak Rocks

    Get PDF
    The correlation of tunnel movement versus rock mass quality was investigated using actual monitored data as well as theoretical studies. Results revealed that meaningful empirical correlation between the commonly used rock mass rating system and tunnel deformation can be obtained only if geological structure and in-situ stresses are taken into account. In this respect, the commonly used rock mass rating system is not very suitable for such purpose. A new parameter using rock mass strength normalized by in-situ stress level appears to be more suitable for establishing the relationship between tunnel deformation and rock mass quality

    Concise theory of chiral lipid membranes

    Full text link
    A theory of chiral lipid membranes is proposed on the basis of a concise free energy density which includes the contributions of the bending and the surface tension of membranes, as well as the chirality and orientational variation of tilting molecules. This theory is consistent with the previous experiments [J.M. Schnur \textit{et al.}, Science \textbf{264}, 945 (1994); M.S. Spector \textit{et al.}, Langmuir \textbf{14}, 3493 (1998); Y. Zhao, \textit{et al.}, Proc. Natl. Acad. Sci. USA \textbf{102}, 7438 (2005)] on self-assembled chiral lipid membranes of DC8,9_{8,9}PC. A torus with the ratio between its two generated radii larger than 2\sqrt{2} is predicted from the Euler-Lagrange equations. It is found that tubules with helically modulated tilting state are not admitted by the Euler-Lagrange equations, and that they are less energetically favorable than helical ripples in tubules. The pitch angles of helical ripples are theoretically estimated to be about 0∘^\circ and 35∘^\circ, which are close to the most frequent values 5∘^\circ and 28∘^\circ observed in the experiment [N. Mahajan \textit{et al.}, Langmuir \textbf{22}, 1973 (2006)]. Additionally, the present theory can explain twisted ribbons of achiral cationic amphiphiles interacting with chiral tartrate counterions. The ratio between the width and pitch of twisted ribbons is predicted to be proportional to the relative concentration difference of left- and right-handed enantiomers in the low relative concentration difference region, which is in good agreement with the experiment [R. Oda \textit{et al.}, Nature (London) \textbf{399}, 566 (1999)].Comment: 14 pages, 7 figure

    In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    Get PDF
    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology

    Assessment of Dynamic Properties of Wushantou Dam

    Get PDF
    Accurate assessment of material properties is essential for a meaningful evaluation of the dynamic behavior of a dam. Comprehensive studies using in- situ measurement and laboratory testing techniques coupled with back calculations of dam responses in recorded motion gives the following conclusions : (1) Response in good agreement with actual motion can be obtained by using appropriate analytical models and material properties; (2) a laboratory test may give reasonable result, but allowance should be made for the effects of strain level, sample disturbance and reconsolidation, especially in loose, non - cohesive soil; (3) in- situ shear wave velocity measurement is considered to be the most representative technique and gives the best estimation in Gmax

    Propagating Coherent Acoustic Phonon Wavepackets in InMnAs/GaSb

    Full text link
    We observe pronounced oscillations in the differential reflectivity of a ferromagnetic InMnAs/GaSb heterostructure using two-color pump-probe spectroscopy. Although originally thought to be associated with the ferromagnetism, our studies show that the oscillations instead result from changes in the position and frequency-dependent dielectric function due to the generation of coherent acoustic phonons in the ferromagnetic InMnAs layer and their subsequent propagation into the GaSb. Our theory accurately predicts the experimentally measured oscillation period and decay time as a function of probe wavelength.Comment: 4 pages, 4 figure
    • …
    corecore