409 research outputs found

    Linking Art to Science: Digital Media as a Technology Translation Tool

    Get PDF
    Technology translation can be achieved through the blending of the sciences and arts in the form of digital imagery. Digital animation and video can be utilized to portray molecular events where the mechanism of action is known but the process occurs at a sub-microscopic level. There needs to be a strong collaboration between scientific advisors and digital artists when creating the animation such that the artistic interpretation of the molecular event conforms to the known and accepted confines of science. The finished animation may be used for information, education or persuasion as entrepreneurial biotechnical companies attempt to find markets, customers and investors interested in their inventions. Educational institutions with programs in the sciences, arts, digital media and medicine need to promote the interaction of students from these disciplines through cross-functional teams and courses. Solutions to problems developed by these teams tend to be broader and more comprehensive than more homogeneous teams

    Investigation of the composition of the Luna 16 lunar sample

    Get PDF
    The concentrations of aluminum, manganese, sodium, chromium, iron, cobalt, and 12 rare earth elements were determined by neutron activation analysis using slow neutrons. Oxygen and silicon were determined using a fast neutron generator. Mossbauer spectroscopy was used to investigate iron compounds in Luna 16 regolith samples from the upper part of the core

    PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling

    Get PDF
    Abstract Introduction The chemokine CXCL12, also known as SDF-1, and its receptor, CXCR4, are overexpressed in prostate cancers and in animal models of prostate-specific PTEN deletion, but their regulation is poorly understood. Loss of the tumor suppressor PTEN (phosphatase and tensin homolog) is frequently observed in cancer, resulting in the deregulation of cell survival, growth, and proliferation. We hypothesize that loss of PTEN and subsequent activation of Akt, frequent occurrences in prostate cancer, regulate the CXCL12/CXCR4 signaling axis in tumor growth and bone metastasis. Methods Murine prostate epithelial cells from PTEN+/+, PTEN +/− , and PTEN−/− (prostate specific knockdown) mice as well as human prostate cancer cell lines C4-2B, PC3, and DU145 were used in gene expression and invasion studies with Akt inhibition. Additionally, HA-tagged Akt1 was overexpressed in DU145, and tumor growth in subcutaneous and intra-tibia bone metastasis models were analyzed. Results Loss of PTEN resulted in increased expression of CXCR4 and CXCL12 and Akt inhibition reversed expression and cellular invasion. These results suggest that loss of PTEN may play a key role in the regulation of this chemokine activity in prostate cancer. Overexpression of Akt1 in DU145 resulted in increased CXCR4 expression, as well as increased proliferation and cell cycle progression. Subcutaneous injection of these cells also resulted in increased tumor growth as compared to neo controls. Akt1 overexpression reversed the osteosclerotic phenotype associated with DU145 cells to an osteolytic phenotype and enhanced intra-osseous tumor growth. Conclusions These results suggest the basis for activation of CXCL12 signaling through CXCR4 in prostate cancer driven by the loss of PTEN and subsequent activation of Akt. Akt1-associated CXCL12/CXCR4 signaling promotes tumor growth, suggesting that Akt inhibitors may potentially be employed as anticancer agents to target expansion of PC bone metastases

    Epidemiologic Risk Factors for In Situ and Invasive Breast Cancers Among Postmenopausal Women in the National Institutes of Health-AARP Diet and Health Study

    Get PDF
    Comparing risk factor associations between invasive breast cancers and possible precursors may further our understanding of factors related to initiation versus progression. Accordingly, among 190,325 postmenopausal participants in the National Institutes of Health-AARP Diet and Health Study (1995-2011), we compared the association between risk factors and incident ductal carcinoma in situ (DCIS; n = 1,453) with that of risk factors and invasive ductal carcinomas (n = 7,525); in addition, we compared the association between risk factors and lobular carcinoma in situ (LCIS; n = 186) with that of risk factors and invasive lobular carcinomas (n = 1,191). Hazard ratios and 95% confidence intervals were estimated from multivariable Cox proportional hazards regression models. We used case-only multivariable logistic regression to test for heterogeneity in associations. Younger age at menopause was associated with a higher risk of DCIS but lower risks of LCIS and invasive ductal carcinomas (P for heterogeneity < 0.01). Prior breast biopsy was more strongly associated with the risk of LCIS than the risk of DCIS (P for heterogeneity = 0.04). Increased risks associated with use of menopausal hormone therapy were stronger for LCIS than DCIS (P for heterogeneity = 0.03) and invasive lobular carcinomas (P for heterogeneity < 0.01). Associations were similar for race, age at menarche, age at first birth, family history, alcohol consumption, and smoking status, which suggests that most risk factor associations are similar for in situ and invasive cancers and may influence early stages of tumorigenesis. The differential associations observed for various factors may provide important clues for understanding the etiology of certain breast cancers

    PTEN Regulates PDGF Ligand Switch for β-PDGFR Signaling in Prostate Cancer

    Get PDF
    Platelet-derived growth factor (PDGF) family members are potent growth factors that regulate cell proliferation, migration, and transformation. Clinical studies have shown that both PDGF receptor β (β-PDGFR) and its ligand PDGF D are up-regulated in primary prostate cancers and bone metastases, whereas PDGF B, a classic ligand for β-PDGFR, is not frequently detected in clinical samples. In this study, we examined the role of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN) in the regulation of PDGF expression levels using both a prostate-specific, conditional PTEN-knockout mouse model and mouse prostate epithelial cell lines established from these mice. We found an increase in PDGF D and β-PDGFR expression levels in PTEN-null tumor cells, accompanied by a decrease in PDGF B expression. Among Akt isoforms, increased Akt3 expression was most prominent in mouse PTEN-null cells, and phosphatidylinositol 3-kinase/Akt activity was essential for the maintenance of increased PDGF D and β-PDGFR expression. In vitro deletion of PTEN resulted in a PDGF ligand switch from PDGF B to PDGF D in normal mouse prostate epithelial cells, further demonstrating that PTEN regulates this ligand switch. Similar associations between PTEN status and PDGF isoforms were noted in human prostate cancer cell lines. Taken together, these results suggest a mechanism by which loss of PTEN may promote prostate cancer progression via PDGF D/β-PDGFR signal transduction

    Reproductive and Hormonal Factors in Relation to Lung Cancer Among Nepali Women

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Background: Of the 1.8 million global incident lung cancer cases estimated in 2012, approximately 60% occurred in less developed regions. Prior studies suggest sex differences in lung cancer risk and a potential role for reproductive and hormonal factors in lung cancer among women. However, the majority of these studies were conducted in developed regions. No prior study has assessed these relationships among Nepali women. Methods: Using data from a hospital-based case-control study conducted in B. P. Koirala Memorial Cancer Hospital (Nepal, 2009–2012), relationships between reproductive and hormonal factors and lung cancer were examined among women aged 23–85 years. Lung cancer cases (n = 268) were frequency-matched to controls (n = 226) based on age (±5 years), ethnicity and residential area. The main exposures in this analysis included menopausal status, age at menarche, age at menopause, menstrual duration, gravidity, and age at first live-birth. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using multivariable logistic regression. Results: Among postmenopausal women, those with a younger age at menopause (<45 years; 45–49 years) had an increased odds of lung cancer compared to those with an older (≥50 years) age at menopause [OR (95%CI): 2.14 (1.09, 4.17); OR (95% CI): 1.93 (1.07, 3.51)], after adjusting for age and cumulative active smoking years. No statistically significant associations were observed with the other reproductive and hormonal factors examined. Conclusion: These results suggest that Nepali women with prolonged exposure to endogenous ovarian hormones, via later age at menopause, may have a lower odds of lung cancer

    FDG uptake, a surrogate of tumour hypoxia?

    Get PDF
    Introduction Tumour hyperglycolysis is driven by activation of hypoxia-inducible factor-1 (HIF-1) through tumour hypoxia. Accordingly, the degree of 2-fluro-2-deoxy-D-glucose (FDG) uptake by tumours might indirectly reflect the level of hypoxia, obviating the need for more specific radiopharmaceuticals for hypoxia imaging. Discussion In this paper, available data on the relationship between hypoxia and FDG uptake by tumour tissue in vitro and in vivo are reviewed. In pre-clinical in vitro studies, acute hypoxia was consistently shown to increase FDG uptake by normal and tumour cells within a couple of hours after onset with mobilisation or modification of glucose transporters optimising glucose uptake, followed by a delayed response with increased rates of transcription of GLUT mRNA. In pre-clinical imaging studies on chronic hypoxia that compared FDG uptake by tumours grown in rat or mice to uptake by FMISO, the pattern of normoxic and hypoxic regions within the human tumour xenografts, as imaged by FMISO, largely correlated with glucose metabolism although minor locoregional differences could not be excluded. In the clinical setting, data are limited and discordant. Conclusion Further evaluation of FDG uptake by various tumour types in relation to intrinsic and bioreductive markers of hypoxia and response to radiotherapy or hypoxia-dependent drugs is needed to fully assess its application as a marker of hypoxia in the clinical setting

    Phase III Randomized Trial Comparing the Efficacy of Cediranib as Monotherapy and in Combination With Lomustine Versus Lomustine Alone in Patients With Recurrent Glioblastoma

    Get PDF
    Purpose: A randomized, phase III, placebo-controlled, partially blinded clinical trial (REGAL [Recentin in Glioblastoma Alone and With Lomustine]) was conducted to determine the efficacy of cediranib, an oral pan-vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitor, either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma. Patients and Methods: Patients (N = 325) with recurrent glioblastoma who previously received radiation and temozolomide were randomly assigned 2:2:1 to receive (1) cediranib (30 mg) monotherapy; (2) cediranib (20 mg) plus lomustine (110 mg/m2); (3) lomustine (110 mg/m2) plus a placebo. The primary end point was progression-free survival based on blinded, independent radiographic assessment of postcontrast T1-weighted and noncontrast T2-weighted magnetic resonance imaging (MRI) brain scans. Results: The primary end point of progression-free survival (PFS) was not significantly different for either cediranib alone (hazard ratio [HR] = 1.05; 95% CI, 0.74 to 1.50; two-sided P = .90) or cediranib in combination with lomustine (HR = 0.76; 95% CI, 0.53 to 1.08; two-sided P = .16) versus lomustine based on independent or local review of postcontrast T1-weighted MRI. Conclusion: This study did not meet its primary end point of PFS prolongation with cediranib either as monotherapy or in combination with lomustine versus lomustine in patients with recurrent glioblastoma, although cediranib showed evidence of clinical activity on some secondary end points including time to deterioration in neurologic status and corticosteroid-sparing effects

    Short-Term Starvation of Immune Deficient Drosophila Improves Survival to Gram-Negative Bacterial Infections

    Get PDF
    Background: Primary immunodeficiencies are inborn errors of immunity that lead to life threatening conditions. These predispositions describe human immunity in natura and highlight the important function of components of the Toll-IL-1receptor-nuclear factor kappa B (TIR-NF-kB) pathway. Since the TIR-NF-kB circuit is a conserved component of the host defence in higher animals, genetically tractable models may contribute ideas for clinical interventions. Methodology/Principal Findings: We used immunodeficient fruit flies (Drosophila melanogaster) to address questions pertaining to survival following bacterial infection. We describe here that flies lacking the NF-kB protein Relish, indispensable for countering Gram-negative bacteria, had a greatly improved survival to such infections when subject to dietary short-term starvation (STS) prior to immune challenge. STS induced the release of Nitric Oxide (NO), a potent molecule against pathogens in flies, mice and humans. Administering the NO Synthase-inhibitory arginine analog N-Nitro-L-Arginine-Methyl-Ester (L-NAME) but not its inactive enantiomer D-NAME increased once again sensitivity to infection to levels expected for relish mutants. Surprisingly, NO signalling required the NF-kB protein Dif, usually needed for responses against Gram-positive bacteria. Conclusions/Significance: Our results show that NO release through STS may reflect an evolutionary conserved process. Moreover, STS could be explored to address immune phenotypes related to infection and may offer ways to boost natura
    • …
    corecore