1,024 research outputs found
Dimerization-Induced Fermi-Surface Reconstruction in IrTe2
We report a de Haas-van Alphen (dHvA) oscillation study on IrTe2 single crystals showing complex dimer formations. By comparing the angle dependence of dHvA oscillations with band structure calculations, we show distinct Fermi surface reconstruction induced by a 1/5-type and a 1/8-type dimerizations. This verifies that an intriguing quasi-two-dimensional conducting plane across the layers is induced by dimerization in both cases. A phase transition to the 1/8 phase with higher dimer density reveals that local instabilities associated with intra-and interdimer couplings are the main driving force for complex dimer formations in IrTe2.X11149sciescopu
Charge ordering, ferroelectric, and magnetic domains in LuFe2O4 observed by scanning probe microscopy
LuFe2O4 is a multiferroic system which exhibits charge order, ferroelectricity, and ferrimagnetism simultaneously below similar to 230 K. The ferroelectric/charge order domains of LuFe2O4 are imaged with both piezoresponse force microscopy (PFM) and electrostatic force microscopy (EFM), while the magnetic domains are characterized by magnetic force microscopy (MFM). Comparison of PFM and EFM results suggests that the proposed ferroelectricity in LuFe2O4 is not of usual displacive type but of electronic origin. Simultaneous characterization of ferroelectric/charge order and magnetic domains by EFM and MFM, respectively, on the same surface of LuFe2O4 reveals that both domains have irregular patterns of similar shape, but the length scales are quite different. The domain size is approximately 100 nm for the ferroelectric domains, while the magnetic domain size is much larger and gets as large as 1 mu m. We also demonstrate that the origin of the formation of irregular domains in LuFe2O4 is not extrinsic but intrinsic. (c) 2015 AIP Publishing LLC.open11116sciescopu
Structure and superconducting properties of ((Ln(1-x)Ln*(x) 1/2 (Ba(1-y)Sr(y) 1/3 Ce 1/6) 8Cu6O(z)
A variety of new oxide superconductors were prepared. The crystallographic structures of the oxides were all tetragonal and of the (Ln(+), Ce)4(Ln(+),Ba)4Cu6Oz (Ln(+) = Nd, Sm or Eu) type which had been previously discovered by Akimitsu et al. As the Sr content, y, increased when Ln = Ln(excited state) = Nd, the oxygen content, z, monotonically increased and the superconducting transition temperature, T(sub c), varied exhibiting a maximum. When z was controlled directly by means of high oxygen pressure sintering techniques, T(sub c) was changed accordingly. T(sub c's) of samples with different combinations of Ln and Ln(excited state) and different values of x and y were found to depend on the magnitude of the bond valence sum for a Cu atom located in the bottom plane of the Cu-O5 pyramid. Transport and magnetization measurements were carried out to investigate the magnetic field dependence of superconducting properties and to determine the phenomenological parameters. The Hall coefficients were positive below room temperature and varied yielding a maximum with respect to temperature
Giant Magnetic Fluctuations at the Critical Endpoint in Insulating HoMnO3
Although abundant research has focused recently on the quantum criticality of itinerant magnets, critical phenomena of insulating magnets in the vicinity of critical endpoints (CEP's) have rarely been revealed. Here we observe an emergent CEP at 2.05 T and 2.2 K with a suppressed thermal conductivity and concomitant strong critical fluctuations evident via a divergent magnetic susceptibility (e.g., ????????(2.05 T,2.2 K)/????????(3 T,2.2 K)≈23,500%, comparable to the critical opalescence in water) in the hexagonal insulating antiferromagnet HoMnO3. © 2013 American Physical Society.open1
Terahertz spin-orbital excitations in the paramagnetic state of multiferroic Sr2FeSi2O7
We studied the novel multiferroic material Sr2FeSi2O7 and found three absorption modes above the magnetic ordering transition temperature using time-domain terahertz spectroscopy. These absorption modes can be explained as the optical transitions between the spin-orbit coupling and crystal-field split 3d(6) Fe2+ ground-state term in this material. Consideration of the compressed tetrahedral environment of the Fe2+ site is crucial to understand the excitations. We point out, however, discrepancies between the single-site atomic picture and the experimental results.1133Ysciescopu
Emergent excitations in a geometrically frustrated magnet
Frustrated systems are ubiquitous and interesting because their behavior is
difficult to predict. Magnetism offers extreme examples in the form of spin
lattices where all interactions between spins cannot be simultaneously
satisfied. Such geometrical frustration leads to macroscopic degeneracies, and
offers the possibility of qualitatively new states of matter whose nature has
yet to be fully understood. Here we have discovered how novel composite spin
degrees of freedom can emerge from frustrated interactions in the cubic spinel
ZnCr2O4. Upon cooling, groups of six spins self-organize into weakly
interacting antiferromagnetic loops whose directors, defined as the unique
direction along which the spins are aligned parallel or antiparallel, govern
all low temperature dynamics. The experimental evidence comes from a
measurement of the magnetic form factor by inelastic neutron scattering. While
the data bears no resemblance to the atomic form factor for chromium, they are
perfectly consistent with the form factor for hexagonal spin loop directors.
The hexagon directors are to a first approximation decoupled from each other
and hence their reorientations embody the long-sought local zero energy modes
for the pyrochlore lattice.Comment: 10 pages, 4 figures upon reques
Psychological well-being amongst students in a Malaysian medical college one year into the COVID-19 pandemic: A cross-sectional study
\ua9 2022, International Society of Global Health. All rights reserved. Background The frequent disruption to the delivery of education and the switch to online learning amidst the COVID-19 pandemic affected students’ mental health. The objectives of the study were to explore the levels of anxiety, depression, somatic symptoms, and stress among students during the COVID-19 pandemic and their associations with sociodemographic status, clinical teaching, and concerns about COVID-19. Methods A cross-sectional study was conducted using convenience sampling via an online self-administered questionnaire-based survey with 285 participants. The survey included questionnaires on sociodemographics, anxiety, depression, somatic symptoms, and stress levels using a validated questionnaire. Data was analyzed using Spearman’s correlation test and ordinal logistic regression to identify correlations between psychological well-being and the effectiveness of e-learning. Results More than half of the students reported anxiety (57.2%), depression (58.6%), somatic symptoms (54.4%) and moderate to high stress (79.7%) during the pandemic. Students who stated that online role players were not helpful had increased anxiety levels (rho=-0.18, P=0.005). However, somatic symptoms were reduced among students who found campus role players helpful (rho=0.16, P=0.012). More than half the participants (55.8%) felt that they were supported by the university during the COVID-19 pandemic, although most students (91.6%) sought clear information and prompt updates from the university. We found that students with psychological distress experiencing anxiety (OR=2.47, 95% confidence interval, CI=1.49-4.08), depression (OR=3.22, 95% CI=1.94-5.34), somatic symptoms (OR=2.94, 95% CI=1.76-4.91, P<0.001), and stress (OR=3.08, 95% CI=1.76-5.41) would value more mental health support from the university. Conclusions The university should consider increasing campus role-play sessions and providing prompt updates and mental health resources to help students cope better psychologically during the pandemic
The Hubbard model within the equations of motion approach
The Hubbard model has a special role in Condensed Matter Theory as it is
considered as the simplest Hamiltonian model one can write in order to describe
anomalous physical properties of some class of real materials. Unfortunately,
this model is not exactly solved except for some limits and therefore one
should resort to analytical methods, like the Equations of Motion Approach, or
to numerical techniques in order to attain a description of its relevant
features in the whole range of physical parameters (interaction, filling and
temperature). In this manuscript, the Composite Operator Method, which exploits
the above mentioned analytical technique, is presented and systematically
applied in order to get information about the behavior of all relevant
properties of the model (local, thermodynamic, single- and two- particle ones)
in comparison with many other analytical techniques, the above cited known
limits and numerical simulations. Within this approach, the Hubbard model is
shown to be also capable to describe some anomalous behaviors of the cuprate
superconductors.Comment: 232 pages, more than 300 figures, more than 500 reference
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC
The uncertainty on the calorimeter energy response to jets of particles is
derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the
calorimeter response to single isolated charged hadrons is measured and
compared to the Monte Carlo simulation using proton-proton collisions at
centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009
and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter
response to specific types of particles (positively and negatively charged
pions, protons, and anti-protons) is measured and compared to the Monte Carlo
predictions. Finally, the jet energy scale uncertainty is determined by
propagating the response uncertainty for single charged and neutral particles
to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3%
for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table,
submitted to European Physical Journal
- …
