237 research outputs found

    First Detailed Analysis of a Relatively Deep, Low Mass-ratio Contact Binary: ATO J108.6991+27.8306

    Full text link
    We present the first detailed photometric analysis of ATO J108.6991+27.8306 (hereinafter as J108). The short-period close binary J108 was observed by the Nanshan 1 m Wide Field Telescope of the Xinjiang Astronomical Observatory. The obtained BVRI-band light curves were used to determine the photometric solution by using the 2003 version of the Wilson-Devinney code. J108 is a typical deep ( f > 50%), low mass ratio (q < 0.25) overcontact binary system with a mass ratio of q = 0.1501 and a fill-out factor of f = 50.1 %, suggesting that it is in the late evolutionary stage of contact binary systems. We found the target to be a W-type W UMa binary and provided evidence for the presence of starspots on both components. From the temperature-luminosity diagram, the main component is the evolved main sequence star with an evolutionary age of about 7.94 Gyr.Comment: 7 pages, 6 figure

    Advances in alternative splicing identification: deep learning and pantranscriptome

    Get PDF
    In plants, alternative splicing is a crucial mechanism for regulating gene expression at the post-transcriptional level, which leads to diverse proteins by generating multiple mature mRNA isoforms and diversify the gene regulation. Due to the complexity and variability of this process, accurate identification of splicing events is a vital step in studying alternative splicing. This article presents the application of alternative splicing algorithms with or without reference genomes in plants, as well as the integration of advanced deep learning techniques for improved detection accuracy. In addition, we also discuss alternative splicing studies in the pan-genomic background and the usefulness of integrated strategies for fully profiling alternative splicing

    Real-time Power Aware Routing in Wireless Sensor Networks

    Get PDF
    Many mission-critical wireless sensor network applications must resolve the inherent conflict between the tight resource constraints on each sensor node, particularly in terms of energy, with the need to achieve desired quality of service such as end-to-end real-time performance. To address this challenge we propose the Real-time Power-Aware Routing (RPAR) protocol. RPAR achieves required communication delays at minimum energy cost by dynamically adapting the transmission power and routing decisions based on packet deadlines. RPAR integrates a geographic forwarding policy cognizant of deadlines, power, and link quality with new algorithms for on-demand power adaptation and efficient neighborhood discovery. Simulations based on a realistic radio model of MICA2 motes show that RPAR significantly reduces the number of deadline misses and energy consumption when compared to existing real-time and energy-efficient routing protocols and beacon based neighborhood management schemes

    DAMO-StreamNet: Optimizing Streaming Perception in Autonomous Driving

    Full text link
    Real-time perception, or streaming perception, is a crucial aspect of autonomous driving that has yet to be thoroughly explored in existing research. To address this gap, we present DAMO-StreamNet, an optimized framework that combines recent advances from the YOLO series with a comprehensive analysis of spatial and temporal perception mechanisms, delivering a cutting-edge solution. The key innovations of DAMO-StreamNet are: (1) A robust neck structure incorporating deformable convolution, enhancing the receptive field and feature alignment capabilities. (2) A dual-branch structure that integrates short-path semantic features and long-path temporal features, improving motion state prediction accuracy. (3) Logits-level distillation for efficient optimization, aligning the logits of teacher and student networks in semantic space. (4) A real-time forecasting mechanism that updates support frame features with the current frame, ensuring seamless streaming perception during inference. Our experiments demonstrate that DAMO-StreamNet surpasses existing state-of-the-art methods, achieving 37.8% (normal size (600, 960)) and 43.3% (large size (1200, 1920)) sAP without using extra data. This work not only sets a new benchmark for real-time perception but also provides valuable insights for future research. Additionally, DAMO-StreamNet can be applied to various autonomous systems, such as drones and robots, paving the way for real-time perception. The code is available at https://github.com/zhiqic/DAMO-StreamNet

    Leveraging Historical Medical Records as a Proxy via Multimodal Modeling and Visualization to Enrich Medical Diagnostic Learning

    Full text link
    Simulation-based Medical Education (SBME) has been developed as a cost-effective means of enhancing the diagnostic skills of novice physicians and interns, thereby mitigating the need for resource-intensive mentor-apprentice training. However, feedback provided in most SBME is often directed towards improving the operational proficiency of learners, rather than providing summative medical diagnoses that result from experience and time. Additionally, the multimodal nature of medical data during diagnosis poses significant challenges for interns and novice physicians, including the tendency to overlook or over-rely on data from certain modalities, and difficulties in comprehending potential associations between modalities. To address these challenges, we present DiagnosisAssistant, a visual analytics system that leverages historical medical records as a proxy for multimodal modeling and visualization to enhance the learning experience of interns and novice physicians. The system employs elaborately designed visualizations to explore different modality data, offer diagnostic interpretive hints based on the constructed model, and enable comparative analyses of specific patients. Our approach is validated through two case studies and expert interviews, demonstrating its effectiveness in enhancing medical training.Comment: Accepted by IEEE VIS 202

    Real-Time Humidity Measurement during Sports Activity using Optical Fibre Sensing

    Get PDF
    An optical fibre sensor for monitoring relative humidity (RH) changes during exercise is demonstrated. The humidity sensor comprises a tip coating of poly (allylamine hydrochloride) (PAH)/silica nanoparticles (SiO2 NPs) deposited using the layer-by-layer technique. An uncoated fibre is employed to compensate for bending losses that are likely to occur during movement. A linear fit to the response of the sensing system to RH demonstrates a sensitivity of 3.02 mV/% (R2 = 0.96), hysteresis ± 1.17% RH when 11 bilayers of PAH/SiO2 NPs are coated on the tip of the fibre. The performance of two different textiles (100% cotton and 100% polyester) were tested in real-time relative humidity measurement for 10 healthy volunteers. The results demonstrate the moisture wicking properties of polyester in that the relative humidity dropped more rapidly after cessation of exercise compared to cotton. The approach has the potential to be used to monitor sports performance and by clothing developers for characterising different garment designs

    PA-Boot: A Formally Verified Authentication Protocol for Multiprocessor Secure Boot

    Full text link
    Hardware supply-chain attacks are raising significant security threats to the boot process of multiprocessor systems. This paper identifies a new, prevalent hardware supply-chain attack surface that can bypass multiprocessor secure boot due to the absence of processor-authentication mechanisms. To defend against such attacks, we present PA-Boot, the first formally verified processor-authentication protocol for secure boot in multiprocessor systems. PA-Boot is proved functionally correct and is guaranteed to detect multiple adversarial behaviors, e.g., processor replacements, man-in-the-middle attacks, and tampering with certificates. The fine-grained formalization of PA-Boot and its fully mechanized security proofs are carried out in the Isabelle/HOL theorem prover with 306 lemmas/theorems and ~7,100 LoC. Experiments on a proof-of-concept implementation indicate that PA-Boot can effectively identify boot-process attacks with a considerably minor overhead and thereby improve the security of multiprocessor systems.Comment: Manuscript submitted to IEEE Trans. Dependable Secure Compu

    Viscosity of Oxygenated Fuel : A Model Based on Eyring's Absolute Rate Theory

    Get PDF
    The authors gratefully acknowledge the supports provided by the National Science Fund for Distinguished Young Scholars of China [No. 51525604], the Foundation for Innovative Research Groups of the National Natural Science Foundation of China [No.51721004], the National Basic Research Program of China [No. 2015CB251502] and 111 Project [No. B16038].Peer reviewedPostprin
    corecore