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In plants, alternative splicing is a crucial mechanism for regulating gene

expression at the post-transcriptional level, which leads to diverse proteins by

generating multiple mature mRNA isoforms and diversify the gene regulation.

Due to the complexity and variability of this process, accurate identification of

splicing events is a vital step in studying alternative splicing. This article presents

the application of alternative splicing algorithms with or without reference

genomes in plants, as well as the integration of advanced deep learning

techniques for improved detection accuracy. In addition, we also discuss

alternative splicing studies in the pan-genomic background and the usefulness

of integrated strategies for fully profiling alternative splicing.
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1 The alternative splicing event in plants

1.1 Definition and classification of alternative splicing

Alternative splicing (AS) is a crucial mechanism for gene expression regulation, which

entails the selection of different splice sites, removal of introns, and subsequent combine

various exons to generate multiple mature mRNA isoforms in plants (Barbazuk et al.,

2008). Plants generate extensive AS to increase the diversity of their transcriptomes,

especially faced with complex environmental changes (Nilsen and Graveley, 2010; Szakonyi

and Duque, 2018; Jia et al., 2022; Lam et al., 2022). There are several types of AS events in

plants, including exon skipping (ES), intron retention (IR), alternative 5′ splice site (AE5′),
alternative 3′ splice site (AE3′), mutually exclusive alternate exon splicing (MEE),

alternative first exon (AFE), and alternative last exon (ALE) (Filichkin et al., 2010; E

et al., 2013; Chen et al., 2020b). Among them, IR is the predominant type (Syed et al., 2012;

Zhu et al., 2017).
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1.2 Generation of alternative splicing

The spliceosome is a large ribonucleoprotein complex that interacts

with various trans-acting factors and is involved in controlling AS in

plants (Will and Luhrmann, 2010; Ule and Blencowe, 2019; Liu et al.,

2021; Jia et al., 2022). The U2 and U12 spliceosomal RNA are the focus

RNAof most studies on the spliceosome (Hartmann, 2007; Reddy et al.,

2012; Zhang et al., 2020). The spliceosome splices intron-exon junction

sites, which are characterized by the conserved 5′-GT sequence and

AG-3′ sequence. Non-snRNA (small nuclear RNA) splicing

factors, such as serine/arginine-rich proteins and heterogeneous

ribonucleoproteins, are known to facilitate the localization of splicing

enhancers and inhibitors, thereby regulating the selection of splice sites

(Geuens et al., 2016; Jeong, 2017; Chen et al., 2020a). Pre-mRNA

undergoes two consecutive reactions to complete the splicing process:

(i) introns form a unique chain-like structure; (ii) intron are rapidly

degraded as a chain-like structure, and exons at the left and right ends

are joined by phosphodiester bonds, achieving intron excision and

exon joining (Black, 2003; Wan et al., 2019).
1.3 Functionality of alternative splicing

AS plays a crucial role in regulating plant growth, development

and responses to abiotic stresses. AS generally occurs during seed

germination, plant growth, and flowering stages. For example, AS of

the NAC transcription factor 109 (NACTF109) during maize

embryo development regulates seed dormancy by controlling

ABA content in seeds (Thatcher et al., 2016). FLOWERING

LOCUS C (FLC) is an important repressor of flowering in

Arabidopsis (Andersson et al., 2008; Sharma et al., 2020), and

AtU2AF65b is a splicing factor involved in ABA-mediated

regulation of flowering time in Arabidopsis by splicing FLC pre-

mRNA (Xiong et al., 2019; Lee et al., 2023). JASMONATE ZIM-

DOMAIN (JAZ) is a key regulators of jasmonate (JA) signaling in

plants (Yan et al., 2009). In Arabidopsis, the JAZ protein binds to

the transcription factor MYC2 and inhibits JA signaling during

quiescence. Binding to the hormone receptor CORONATINE

INSENSITIVE 1 (COI1) upon hormone induction leads to

degradation of JAZ. This degradation allows AtMED25 to activate

MYC2 and promote JA signaling. AtMED25 regulates JAZ gene

replacement splicing by recruiting splicing factors PRP39a and

PRP40a, preventing excessive desensitization of JA signaling

mediated by JAZ splice variants (Pauwels and Goossens, 2011;

Wu et al., 2020). In rice (Oryza Sativa), OsDREB2 activates the

expression of downstream genes involved in heat shock stress

response and tolerance. The direct homolog of OsDREB2B

enhances the ability of plants to cope with drought stress through

AS by directly producing OsDREB2B2 by splicing I1, E2, and I2 at

once under drought stress (Matsukura et al., 2010).

Different gene variants affecting alternative splicing (AS) have

been observed in numerous functional gene studies. These variants

play a crucial role in phenotypic changes. For instance, in poplar

(Populus tomentosa), age-dependent AS triggers an aberrant
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splicing event in the pre-mRNA encoding PtRD26. This event

leads to the production of a truncated protein, PtRD26IR, which

acts as a dominant negative regulator of senescence by interacting

with multiple senescence-associated NAC family transcription

factors, inhibiting their DNA-binding activity (Wang et al., 2021).

In Arabidopsis, the RNA-binding splicing factor SUPPRESSOR-

OF-WHITE-APRICOT/SURP RNA-BINDING DOMAIN-

CONTAINING PROTEIN1 (SWAP1) interacts with the splicing

factor complexes SPLICING FACTOR FOR PHYTOCHROME

SIGNALING (SFPS) and REDUCED RED LIGHT RESPONSES

IN CRY1CRY2 BACKGROUND 1 (RRC1). These complexes

regulate pre-mRNA splicing and induce alterations in photo

morphology (Kathare et al., 2022). In bread wheat (Triticum

aestivum), two variable splicers, Pm4b_V1 and Pm4b_V2, of the

powdery mildew resistance gene Pm4b interact. In brief, Pm4b_V2

enhances wheat disease resistance by recruiting Pm4b_V1 from the

cytoplasm to the endoplasmic reticulum (ER) by forming an ER-

related complex (Sanchez-Martin et al., 2021).
2 Detection of alternative splicing
using transcriptome sequencing

The continuous advancement of RNA sequencing (next

generation sequencing) and long-read isoform sequencing (Iso-

seq) has significantly enhanced our ability to study alternative

splicing comprehensively. Two primary computational

approaches have been employed to investigate splicing diversity

using RNA-seq data.

Transcript reconstruction methods: These approaches focus on

inferring isoform usage frequency by utilizing probabilistic models

to reconstruct each isoform based on the read distribution mapped

to a specific gene. Typical software packages include Cufflinks

(Trapnell et al., 2010), StringTie (Pertea et al., 2015), MISO

(Yarden et al., 2010), SpliceGrapher (Mark et al., 2012). Indeed,

transcriptome reconstruction is an exceptionally challenging

problem in the field of bioinformatics and computational biology

(Estefania et al., 2021). Single-molecule long-read sequencing

technology has emerged as a valuable tool in transcriptome

sequencing due to its ability to generate long reads with high

throughput. The utilization of Iso-seq has become a preferred

approach for sequencing more comprehensive and full-length

transcriptomes, enabling the prediction and validation of gene

models with greater accuracy and completeness. By producing

long reads that can span entire transcript isoforms, Iso-seq

overcomes some of the challenges associated with transcriptome

reconstruction, such as accurately detecting complex splicing events

and resolving alternative isoforms that may be missed by short-read

sequencing. However, they are not suitable to pinpoint splicing

events but whole sequences of transcripts. For instance, degraded

and immature RNA as well as DNA fragments in the RNA samples

can be erroneously identified as novel genes and transcripts in the

Iso-seq data. In practice, tools such as TAMA software (Sim et al.,

2020) could determine splice junctions and transcription start and
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end sites accurately. Unfortunately, the current cost of third-

generation sequencing is high, and the detection of all transcripts

may be limited by the depth of sequencing and the number of

samples. Therefore, the development of tools combining RNA-seq

and Iso-seq could effectively solve these problems. Regrettably, no

mature tools have been released so far.

The second computational approach involves utilizing junction

and/or exon information to infer, annotate, and identify novel

splicing events (Table 1). Several methods, such as rMATS (Shen

et al., 2014), MAJIQ (Vaquero-Garcia et al., 2016), and LeafCutter

(Li et al., 2018), utilize junction information to identify these

splicing events. On the other hand, DEXSeq (Anders and Huber,

2010) specifically focuses on analyzing the differential usage of

exons between different experimental conditions. Two main

methodologies are commonly used to quantify alternative splicing

(AS) events: the percent spliced-in (PSI) and the splicing index (SI).

PSI provides an estimate of the relative usage of each alternative

pathway of an AS event. In contrast, the splicing index (SI)

measures the relative signal or coverage of an exon or a junction

compared to the entire gene.

In addition to detecting different AS events, it is important to

directly compare direct AS differences across samples. The Cuffdiff

(Cufflinks) (Trapnell et al., 2010) package can test for differential

splicing between isoforms in different samples. In addition, CASH

(Wu et al., 2018), DEXseq (Anders and Huber, 2010), DiffSplice (Hu

et al., 2013), Gess (Ye et al., 2014), rMATS (Shen et al., 2014),

SplAdder (Kahles et al., 2016) and other software can use different

algorithms to detect different AS events between different samples.

But unfortunately, none of these AS analysis software takes into

account the existence of variants. Direct analysis at the allele-aware

level cannot be achieved. Allele-aware AS analysis software is of great

significance in analyzing the causes of variable AS, such as comparing

the differences in AS between different genomic haplotypes.
3 Deep learning based alternative
splicing study

Several models have been developed for predicting and

identifying alternative splicing events combining deep learning

approaches (Table 2). For example, DeepASmRNA is a

convolutional neural network (CNN) model capable of

identifying alternative splicing events with over 90% accuracy

(Cao et al., 2022). The Deep Splicing Code model uses raw RNA

sequences to classify exons based on their alternative splicing

behavior and performs well in identifying splice sites and motifs

(Louadi et al., 2019). The deep-learning model AbSplice predicts

anomalous splicing, increasing the accuracy of traditional DNA-

based anomalous splicing prediction to 48% at a 20% call rate.

Furthermore, integrating RNA-Seq raises the accuracy to 60%

(Wagner et al., 2023). Additionally, the deep learning based

computational framework called DARTS (deep-learning

augmented RNA-seq analysis of transcript splicing) utilizes deep

neural networks and Bayesian hypothesis testing for identifying
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exons based on their sequence characteristics, attaining a more than

95% accuracy rate in recognizing alternative splicing (Zhang et al.,

2019). Finally the hybrid model combining CNN, recurrent neural

network, and Long Short-Term Memory (LSTM) network has a

splice locus identification accuracy of 96% (Nazari et al., 2019). In

summary, deep learning models for alternative splicing detection

have high detection accuracy, event classification, and splice

site identification.
4 Pan-genomics-based alternative
splicing study

During the lengthy process of evolution, each plant develops

unique genetic influenced by geographical and environmental

factors. Consequently, the genome of a single plant can no longer

fully represent all the genetic information of a species, and pan-

genome of a species encompasses all the genetic information of a

species and captures most of its genetic diversity and can help to

explore plant genome evolution (Alonge et al., 2020; Liu et al., 2020;

Long et al., 2021; Qin et al., 2021), crop molecular breeding (Tao

et al., 2019; Yu et al., 2021b), and construction of genotype

databases (Gui et al., 2020; Peng et al., 2020; Song et al., 2021).

Similarly, the pan-transcriptome is a recalling concept of the pan-

genome, which reflects the set of all transcripts of a species or an

organism. The aggregation group integrating AS events from

different genomes in a species can better represent the whole

transcriptomes of the species and can better promote the study of

AS biological processes. A tool RPVG (Sibbesen et al., 2023) was

released to construct spliced pangenome graphs, to map RNA

sequencing data to these graphs, and to perform haplotype-aware

expression quantification of transcripts in a pantranscriptome.
5 Conclusions and prospects

The recent the developments of third-generation sequencing

technologies and detection algorithms have led to significant

advances in the study of alternative splicing. While much has

been identified regarding the mechanism of alternative splicing

generation and some of its functions, challenges remain in the

detection of alternative splicing events without reference genomes.

Using the third-generation reconstruction technology can

reconstruct the AS version very well, but cannot directly

determine the coordinates of the AS sites. Therefore, the

algorithm combined with the second generation and the third

generation sequencing technologies can solve most of such

problems well. Compared with state-of-the-art methods, deep

learning-based models have been used to improve the detection

accuracy and the number of splicing events. Allele-aware AS

analysis software is of great significance in analyzing the causes of

variable AS, such as comparing the differences in AS between

different genomic haplotypes. In the pan-genome context, it is of

great significance to integrate different transcript information from
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TABLE 1 Algorithms for the identification of Alternative Splicing events.

Algorithm E. S. V. PSI D.
Information used for

quantification References

Aspli ✓ ✓ × ✓ × Only junctions (Mancini et al., 2021)

Leafcutter × ✓ ✓ ✓ × Only junctions (Li et al., 2018)

CASH ✓ ✓ × ∼ ✓ Exons and junctions (Wu et al., 2018)

SplAdder ✓ ✓ × ✓ ✓ Exons and junctions (Kahles et al., 2016)

SGSeq ✓ × ✓ ✓ × Exons and junctions (Xing et al., 2016)

MAJIQ+VOILA ✓ ✓ ✓ ✓ × Only junctions (Vaquero-Garcia et al., 2016)

EventPointer ✓ ✓ ✓ ✓ × Exons and junctions (Romero et al., 2016)

SUPPA ✓ ✓ ✓ ✓ × Expression of isoforms involved in event (Alamancos et al., 2015)

SplicingTypesAnno ✓ ✓ ✓ ✓ × Exons and junctions (Sun et al., 2015)

SplicingExpress ✓ ✓ ✓ × × Expression of isoforms involved in event (Kroll et al., 2015)

SplicePie ∼ ✓ × ✓ × Exons and junctions (Pulyakhina et al., 2015)

Vast-Tools ✓ ✓ ✓ ✓ × Exons and junctions (Irimia et al., 2014)

SpliceR ✓ × × × ✓ Expression of isoforms involved in event (Vitting-Seerup et al., 2014)

rMATS ✓ ✓ × ✓ ✓ Exons and junctions (Shen et al., 2014)

Gess ✓ ✓ × ✓ ✓ Only exons (Ye et al., 2014)

SplicingCompass × ✓ ✓ × × Exons and junctions (Aschoff et al., 2013)

ASprofile ✓ × × × × Expression of isoforms involved in event (Florea et al., 2013)

DSGseq × ✓ × × ✓ Only exons (Wang et al., 2013)

DiffSplice ✓ ✓ ✓ ✓ ✓ Exons and junctions (Hu et al., 2013)

SpliceSeq ✓ ✓ × ✓ × Exons and junctions (Ryan et al., 2012)

SpliceTrap ✓ ✓ × ✓ × Only exons (Wu et al., 2011)

JuncBASE ✓ ✓ × × × Only junctions (Brooks et al., 2011)

DEXseq × ✓ × × ✓ Only exons (Anders and Huber, 2010)

AltAnalyze ✓ ✓ ✓ × × Exons and junctions (Emig et al., 2010)
F
rontiers in Plant Science
 04
*There is not a peer-reviewed reference for this algorithm. E, event classification; S, this method provides statistics; V, visualization; PSI, whether the PSI is returned; D, Whether to make
discrepancy detection.
✓, this algorithm provides this result; ×, this algorithm does not provide this result; ~, this algorithm does not provide this result, but it is easily computed.
TABLE 2 Deep learning algorithms for predicting and recognizing Alternative Splicing events.

Algorithm Neural Network References

AbSplice Deep Neural Network (Wagner et al., 2023)

CI-SpliceAI Deep Neural Network (Strauch et al., 2022)

Deep Splicer Convolutional Neural Network (Fernandez-Castillo et al., 2022)

DeepASmRNA Convolutional Neural Network (Cao et al., 2022)

DeepIsoFun Deep Neural Network (Yu et al., 2021a)

DMIL-IsoFun Convolutional Neural Network (Yu et al., 2021a)

LSTM_Splice Long Short-Term Memory Network (Regan et al., 2021)

SQUIRLS Deep Neural Network (Danis et al., 2021)

Deep SHAP Deep Neural Network (Jha et al., 2020)

(Continued)
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different samples. Exploring the relationship between different

alternative splicing events and mutations detected by different

algorithms is of great significance for mining the influence of

mutations on AS events.
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