73 research outputs found

    Genome-Wide Association Mapping of Starch Pasting Properties in Maize Using Single-Locus and Multi-Locus Models

    Get PDF
    Maize starch plays a critical role in food processing and industrial application. The pasting properties, the most important starch characteristics, have enormous influence on fabrication property, flavor characteristics, storage, cooking, and baking. Understanding the genetic basis of starch pasting properties will be beneficial for manipulation of starch properties for a given purpose. Genome-wide association studies (GWAS) are becoming a powerful tool for dissecting the complex traits. Here, we carried out GWAS for seven pasting properties of maize starch with a panel of 230 inbred lines and 145,232 SNPs using one single-locus method, genome-wide efficient mixed model association (GEMMA), and three multi-locus methods, FASTmrEMMA, FarmCPU, and LASSO. We totally identified 60 quantitative trait nucleotides (QTNs) for starch pasting properties with these four GWAS methods. FASTmrEMMA detected the most QTNs (29), followed by FarmCPU (19) and LASSO (12), GEMMA detected the least QTNs (7). Of these QTNs, seven QTNs were identified by more than one method simultaneously. We further investigated locations of these significantly associated QTNs for possible candidate genes. These candidate genes and significant QTNs provide the guidance for further understanding of molecular mechanisms of starch pasting properties. We also compared the statistical powers and Type I errors of the four GWAS methods using Monte Carlo simulations. The results suggest that the multi-locus method is more powerful than the single-locus method and a combination of these multi-locus methods could help improve the detection power of GWAS

    Comparison of sequencing-based and array-based genotyping platforms for genomic prediction of maize hybrid performance

    Get PDF
    Genomic selection (GS) is a powerful tool for improving genetic gain in maize breeding. However, its routine application in large-scale breeding pipelines is limited by the high cost of genotyping platforms. Although sequencing-based and array-based genotyping platforms have been used for GS, few studies have compared prediction performance among platforms. In this study, we evaluated the predictabilities of four agronomic traits in 305 maize hybrids derived from 149 parental lines subjected to genotyping by sequencing (GBS), a 40K SNP array, and target sequence capture (TSC) using eight GS models. The GBS marker dataset yielded the highest predictabilities for all traits, followed by TSC and SNP array datasets. We investigated the effect of marker density and statistical models on predictability among genotyping platforms and found that 1K SNPs were sufficient to achieve comparable predictabilities to 10K and all SNPs, and BayesB, GBLUP, and RKHS performed well, while XGBoost performed poorly in most cases. We also selected significant SNP subsets using genome-wide association study (GWAS) analyses in three panels to predict hybrid performance. GWAS facilitated selecting effective SNP subsets for GS and thus reduced genotyping cost, but depended heavily on the GWAS panel. We conclude that there is still room for optimization of the existing SNP array, and using genotyping by target sequencing (GBTS) techniques to integrate a few functional markers identified by GWAS into the 1K SNP array holds great promise of being an effective strategy for developing desirable GS breeding arrays

    Joint Mapping of Quantitative Trait Loci for Multiple Binary Characters

    No full text
    Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing pleiotropic effects and close linkage. Joint mapping also can improve statistical power of QTL detection. However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance traits are measured as one or more discrete characters. These discrete characters are often correlated. Joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the binary phenotypes through some underlying thresholds. The new method actually maps loci for the variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated data. We also apply the new method to a set of real data and detect several loci responsible for blast resistance in rice

    Genomic selection methods for crop improvement: Current status and prospects

    No full text
    With marker and phenotype information from observed populations, genomic selection (GS) can be used to establish associations between markers and phenotypes. It aims to use genome-wide markers to estimate the effects of all loci and thereby predict the genetic values of untested populations, so as to achieve more comprehensive and reliable selection and to accelerate genetic progress in crop breeding. GS models usually face the problem that the number of markers is much higher than the number of phenotypic observations. To overcome this issue and improve prediction accuracy, many models and algorithms, including GBLUP, Bayes, and machine learning have been employed for GS. As hot issues in GS research, the estimation of non-additive genetic effects and the combined analysis of multiple traits or multiple environments are also important for improving the accuracy of prediction. In recent years, crop breeding has taken advantage of the development of GS. The principles and characteristics of current popular GS methods and research progress in these methods for crop improvement are reviewed in this paper. Keywords: Genomic selection, Prediction, Accuracy, Cro
    corecore