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Epistasis between cytoplasmic and nuclear genes is the primary genetic component of complex quantitative traits. Genetic dissec-
tion of cytonuclear epistasis is fundamentally important to understand the genetic architecture of complex traits. In this study, a 
two-dimensional genome scan strategy was employed to evaluate the contribution of cytoplasm, quantitative trait loci (QTL), 
QTL×QTL interactions and QTL×QTL×cytoplasm interactions to the phenotypic variation. The p-value and parameter value for 
each genetic effect were calculated by multiple regression analysis. A stepwise approach was suggested to build confidence in 
candidate QTL on the basis of q-value estimation, false discovery rate calculation and Bonferroni adjustment. A fine-scale grid 
scan strategy was proposed for further analysis of peaks of interest. Plant height in maize was used as an example to illustrate the 
efficiency of the two-dimensional genome scan strategy. 
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The nucleus and cytoplasm are separate entities in a cell, 
but they cooperate to maintain cellular functions and to de-
termine the organismal phenotypes. The cytoplasm contains 
a variety of organelles, of which the mitochondria and 
chloroplasts contain their own DNA, and provides an envi-
ronment for nuclear gene expression and cellular metabolic 
reactions. Cytonuclear interactions are an important con-
tributor to phenotypic variation. A significant contribution 
of nuclear-cytoplasm interaction has been detected in model 
organisms such as maize, rice, mice, yeast, and Drosophila 
[1–5]. The close relationship between the nucleus and cyto-
plasm has attracted much attention from macro- and mi-
cro-evolutionary perspectives. Research on cytonuclear co-
evolution and coadaptation suggests cytonuclear epistasis 
contributes substantially to phenotypic variation [6]. How-
ever, in most gene-mapping studies that feature a single 

cytoplasmic background, incorporation of this important 
component is difficult. Nichols et al. [7] pioneered research 
on subtle QTL×cytoplasm interactions. These authors used 
double haploids produced by androgenesis using eggs from 
different females in rainbow trout. Both the maternal cyto-
plasmic environment and QTL×cytoplasm effects contrib-
uted to variability in development rate, but QTL×cytoplasm 
interactions were minor and only detected at small-effect 
QTL. Subsequently, Tang et al. [8] proposed a mapping 
model based on a reciprocal-cross design to detect the cy-
tonuclear epistatic QTL and evaluate the contribution of the 
cytoplasm and QTL×cytoplasm interactions to phenotypic 
variation. 

1  Statistical model and methods 

The proposed model is an extension of composite interval 
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mapping model [9]. Obviously, this additive-dominant ge-
netic model cannot be used to detect and evaluate the inter-
actions among different loci in the genome. However, epi-
stasis among nuclear genes is a primary genetic component 
of quantitative traits in several model organisms [10–12]. 
Therefore, interactions among loci should not be ignored in 
complex trait studies. To address this problem, we devel-
oped a novel strategy to perform a simultaneous two-   
dimensional (2D) genome-wide search under a flexible 
model of epistasis.  

Taking a F2 population as an example, based on a recip-
rocal-cross design and the basic concept of a two-dimen- 
sional scan approach, the phenotypic value of the jth (j = 1 
to n) individual in the F2 mapping population can be ex-
pressed by the following genetic model:  
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This is a two-QTL model, where m is the overall mean of 
the population; c is the cytoplasmic effect; a1 and d1 are the 
additive and dominance effects, respectively, of one QTL; 
a2 and d2 denote the effects of a second QTL; 

1 2 1 2
, ,a a a di i  

2 1a di  and 
1 2d di  are the additive-by-additive, additive-by- 

dominance, dominance-by-additive and dominance-by- 
dominance interaction effects of two QTL; the cytonuclear 
interaction effects are denoted by 

1 1 2 2
, , , ,a c d c a c d ci i i i  

1 2 1 2 2 1
, ,a a c a d c a d ci i i and 

1 2d d ci , which are the interactions among 

cytoplasmic effect and a1, d1, a2, d2, 
1 2 1 2 2 1

, ,a a a d a di i i  and 

1 2
;d di  xcj is an indicator variable, for which xcj = 1 and xcj = 

–1 denote the cytoplasmic types of the two parents; x1j to 
x16j are the indicator variables that describe different QTL 
genotypes and their interactions and are defined in Table 1; 
and ej is the residual error with a 2(0,  )eN   distribution. 

All 16 effects that involved nuclear QTL and cytonuclear 
interaction are partial regression coefficients of yj on the 
indicator variables x1j to x16j.  

The genotype indicator variable for a QTL was not ob-
servable. However, we assumed that each QTL was linked 
to a marker, and thus the genotype of the QTL was replace-
able by that of the corresponding marker. The proposed 
method was essentially a two-marker analysis implemented 
via a regression approach [13]. Hereafter, we use the terms 
marker and QTL interchangeably. 

The proposed statistical model incorporated important 
interactions within the nuclear genome and interactions 
among nuclear loci and the cytoplasmic background. A 
general multiple regression analysis was implemented for 
each QTL pair to obtain the F-test statistic of each two-QTL 
model, the t-test statistic of each genetic component in the 
model and their estimates. To perform the 2D genome scan, 
(k2−k)/2 tests would be implemented in the case of k mark-
ers in the whole genome. Consequently, the risk of false 
discoveries would be usually very high because of this 
high-throughput experiment. Therefore, it was necessary to 
establish an appropriate significance threshold in 2D genome 

Table 1  QTL genotypes and their genetic components in the F2 population with two cytoplasmic backgrounds 

Cyto-genotypesa) m c a1 d1 a2 d2 a1a2 a1d2 a2d1 d1d2 ia1c id1c ia2c id2c ia1a2c ia1d2c ia2d1c id1d2c 

C1(Q1Q1Q2Q2) 1 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 

C1(Q1Q1Q2q2) 1 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 

C1(Q1Q1q2q2) 1 1 1 0 –1 0 –1 0 0 0 1 0 –1 0 –1 0 0 0 

C1(Q1q1Q2Q2) 1 1 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 

C1(Q1q1Q2q2) 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 

C1(Q1q1q2q2) 1 1 0 1 –1 0 0 0 –1 0 0 1 –1 0 0 0 –1 0 

C1(q1q1Q2Q2) 1 1 –1 0 1 0 –1 0 0 0 –1 0 1 0 –1 0 0 0 

C1(q1q1Q2q2) 1 1 –1 0 0 1 0 –1 0 0 –1 0 0 1 0 –1 0 0 

C1(q1q1q2q2) 1 1 –1 0 –1 0 1 0 0 0 –1 0 –1 0 1 0 0 0 

C2(Q1Q1Q2Q2) 1 –1 1 0 1 0 1 0 0 0 –1 0 –1 0 –1 0 0 0 

C2(Q1Q1Q2q2) 1 –1 1 0 0 1 0 1 0 0 –1 0 0 –1 0 –1 0 0 

C2(Q1Q1q2q2) 1 –1 1 0 –1 0 –1 0 0 0 –1 0 1 0 1 0 0 0 

C2(Q1q1Q2Q2) 1 –1 0 1 1 0 0 0 1 0 0 –1 –1 0 0 0 –1 0 

C2(Q1q1Q2q2) 1 –1 0 1 0 1 0 0 0 1 0 –1 0 –1 0 0 0 –1 

C2(Q1q1q2q2) 1 –1 0 1 –1 0 0 0 –1 0 0 –1 1 0 0 0 1 0 

C2(q1q1Q2Q2) 1 –1 –1 0 1 0 –1 0 0 0 1 0 –1 0 1 0 0 0 

C2(q1q1Q2q2) 1 –1 –1 0 0 1 0 –1 0 0 1 0 0 –1 0 1 0 0 

C2(q1q1q2q2) 1 –1 –1 0 –1 0 1 0 0 0 1 0 1 0 –1 0 0 0 

a) C1 and C2 denote the cytoplasm types of two parents, respectively. 
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scans to determine the overall significance of the results.  
Several adjustment procedures have been suggested to 

establish the significance and control the number of false 
positives in multiple tests [14–17]. Similar to choosing a 
significance threshold in a single test, the choice of a multi-
ple testing correction method to use depends on the research 
objectives and costs associated with false positives. In ac-
cordance with Carlborg and Haley’s suggestion [18], a 
stepwise strategy was suggested to build confidence in these 
QTL in the present study, which integrated multiple testing 
correction methods and possible external information. 
Firstly, a 2D genome scan was implemented to estimate the 
contribution of each marker combination to the interesting 
trait. The complete results included the F-test statistic of 
each two-QTL model, the t-test statistic of each genetic 
component in the model and their estimates. Secondly, from 
these results, a set of potentially interesting QTL was se-
lected on the basis of q-value estimation, false discovery 
rate (FDR) calculation and Bonferroni adjustment for each 
genetic component. In the present study, the q-value was a 
Bayesian posterior p-value, which was used to control the 
positive false discovery rate (pFDR). Storey [15] proposed 
definition of the q-value as an analog of the p-value that 
incorporates FDR-based multiple testing correction.  

The aim of the procedure was to separate the set of po-
tential QTL into high-, moderate- and low-confidence QTL, 
which were simultaneously detected by three, two and one 
correction methods, respectively. In addition, if strong ex-
ternal information was available, it was preferred to help 
with classification of these potential QTL. This information 
can be obtained from previous research, other analysis 
models and even other independent data sources. This step-
wise strategy allowed the detection of QTL with a risk of 
false positive and false negative detection, but was sup-
ported by strong external information. Subsequently, the 
interesting main-effect QTL, QTL×QTL interactions, and 
QTL×cytoplasm interactions can be selected for further 
research.  

2  Simulation study 

The applicability of the proposed method was further 
demonstrated by a simulation experiment. Two QTL, de-
noted QTL1 and QTL2, were designed to locate at the 63 
cM (7th marker) and 140 cM (15th marker) positions of a 
mimic chromosome, which was 195 cM in length and cov-
ered by 20 evenly spaced markers (Figure 1). The effects of 
the two QTL were a1 = 1.0, d1 = 1.0, a2 = 0.0, d2 = 1.0, ia1c = 
1.5, id1c = 0.0, ia2c = 1.5, id2c = 1.0, ia1a2 = 1.0, id1d2 = 1.0, ia2d1 

= 0.0, ia1d2 = 1.5, ia1a2c = 1.5, id1d2c = 1.5, ia2d1c = 1.0, and ia1d2c 

= 0.0. The population mean and cytoplasmic effect were set 
as m = 5 and c = 0.5, respectively. We generated data with 
100 direct F2 individuals and 100 reciprocal F2 individuals. 
The QTL heredities, calculated with the formula 

  2/2 /42 2
pa +d /  , were 9.7% and 3.2% for QTL1 and 

QTL2, respectively. These data were analyzed using the 
proposed method with 100 replicates. The threshold in the 
simulation study was obtained by Bonferroni adjustment, 
and the whole-genome significance level was 0.05. The 
statistical power was calculated in accordance with the 
threshold and estimated position. Only the QTL that were 
located in close proximity to the seventh and fifteenth 
markers and reached the threshold were considered to be 
effective QTL. The statistical powers of QTL detection and 
estimates of the QTL effects are summarized in Table 2. 
The proposed method provided a reasonably precise and 
accurate estimation of QTL effects, especially the interac-
tion among the two QTL and the cytoplasmic background. 
The estimated population mean was 4.98 ± 0.17 and the 
estimated cytoplasmic effect was 0.48 ± 0.16, which were 
very similar to the true values. The results from a 2D chro-
mosome scan of simulated data are presented in Figure 1. 
The –log(p) scores were obtained with the proposed multi-
ple regression model. The hot region suggested the exist-
ence of QTL. The results presented in Figure 1 suggested 
that two QTL were located at the seventh and fifteenth 
markers. Interaction effects between the two QTL were also 
apparent. Further detailed analysis would help to establish a 
novel interaction model, for example, for additive or domi-
nant effects that interacted with the cytoplasmic back-
ground.  

3  Application of the model with empirical data 

To assess the efficiency of the model, a data set for plant 
height in maize was compiled. Using two parental lines, JB 
and Y53, we constructed a bulked F2 mapping population 
with 120 individuals from the direct cross (JB × Y53) and 
120 individuals from the reciprocal cross (Y53 × JB). A 
genetic linkage map was constructed that contained 154 
simple sequence repeat markers, which covered 1735.0 cM 
of the maize genome with an average marker spacing of 
11.3 cM. It was noted that in field experiments a plethora of 
differences in growth, development, morphology, and pro-
duction were exhibited between the direct and reciprocal F1 
hybrid populations, which suggested a difference in the cy-
toplasmic background and possible cytonuclear interaction. 
Plant height in the direct and reciprocal populations differed 
significantly (p < 0.01). A cytoplasmic effect was signifi-
cant at −4.82 cm, which indicated that the cytoplasm from 
JB caused an average 4.82 cm reduction in plant height. The 
contribution of a cytoplasmic effect to variation in plant 
height was almost 9.0%, which was calculated with the 
formula 2 2 2/ /c c p ph v c v  , where 2

c  and vp denote 

variance caused by the cytoplasm and phenotypic variance, 
respectively. 

For convenience of analysis, the linkage groups were  
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Table 2  Statistical power of QTL detection and estimates of QTL effects obtained from simulated data 

Component Genetic effect True value Estimates valuea) Standard deviation Statistical power (%)b) 

QTL1 a1 1.0 0.98 0.15 88** 

 d1 1.0 1.06 0.19 

QTL2 a2 0.0 – – 81** 

 d2 1.0 1.14 0.20 

QTL1×Cytoplasm ia1c 1.5 1.51 0.15 100** 

 id1c 0.0 – –  

QTL2×Cytoplasm ia2c 1.5 1.52 0.15 72** 

 id2c 1.0 1.12 0.14  

QTL1×QTL2 ia1a2 1.0 1.03 0.15 100 

 id1d2 1.0 1.57 0.27 81 

 ia2d1 0.0 – – – 

 ia1d2 1.5 1.08 0.18 81 

QTL1×QTL2×Cytoplasm ia1a2c 1.5 1.52 0.15 100 

 id1d2c 1.5 1.57 0.28 89 

 ia2d1c 1.0 1.04 0.17 95 

 ia1d2c 0.0 – – – 

a) ‘–’ indicates that the QTL effects were not detected by the proposed method. b) **, The statistical power calculated as the number of detected effective 
QTL divided by the 100 replicates in the simulated study. The effective QTL is defined as the QTL found in the assumed marker position with a significant 
additive and dominant effect simultaneously.  

 
 

 

Figure 1  The −log(p) values estimated by two-dimensional genome-wide 
scan of simulated data shown in the lower right triangle. Calculations were 
performed by multiple regression of each pair of markers along the simu-
lated chromosome. The p-values of the two-QTL model were obtained for 
each marker pair. The results suggest that two QTL were located at the 
seventh and fifteenth markers and the interaction effects between the sev-
enth and fifteenth markers are also apparent. 

linked as a single chromosome. We performed the 2D scan 
by multiple linear regression analysis and computing the 
q-value for the F-statistic of the two-QTL model for each 
marker pair, to form a 2D irregular grid of marker coordi-
nates across the genome on the basis of –log(p) scores (Fig-
ure 2(a), lower right triangle). The highest peak over the 2D 
surface was obtained for two loci on chromosomes 3 and 4 

(p-value 2.72 × 10−20). It was interesting that chromosomes 
3, 5 and 6 were indicated to be vitally important because the 
hot spot was always associated with these chromosomes. A 
single-QTL genome scan also showed evidence of the im-
portance of chromosomes 3, 5 and 6 (Figure 2(b)). These 
peaks over the 2D surface suggested that at least one genetic 
component in the two-QTL model substantially contributes 
to plant height. Some peaks in the 2D surface provided evi-
dence for intranuclear and cytonuclear interactions that sig-
nificantly contributed to plant height. Some peaks suggested 
that QTL pairs interacted, but these loci did not have signif-
icant effects on plant height in the single-QTL genome scan 
(Figure 2(b), red line). In this analysis, the single-QTL ge-
nome scan was performed with the cytonuclear model, 
written in an interval mapping form, yj = m + xcjc + x1ja + 
x2jd + x3jiac + x4jidc + ej (j = 1 to n), which was a shortened 
version of the model that we proposed previously [8].  

The complete results included all of these genetic com-
ponents screened by q-value estimation, FDR calculation 
and Bonferroni adjustment to control the overall signifi-
cance threshold of α = 0.05. The QTL of potential biologi-
cal interest were selected and classified as high-, moderate- 
and low-confidence QTL on the basis of the p-value only. In 
this study, Bonferroni adjustment retained its conservative 
property and detected the fewest but most highly significant 
QTL, whereas the q-value estimation approach was less crit-
ical and thus identified the highest number of QTL. The FDR 
estimation approach seemed moderate compared with the 
other two methods. The most highly significant QTL and 
various interactions identified by the conservative Bonferroni 
adjustment method are summarized in Tables S1 and S2.  
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Figure 2  Genome scan for plant height in maize. (a) Two-dimensional 
genome-wide scan estimating −log(p) for a two-QTL genetic model. Cal-
culations were performed by multiple regression of each pair of markers in 
the genome. The p-values of the two-QTL model were obtained for each 
marker pair. The −log(p) scores are presented in the lower right and upper 
left triangles for a full model and reduced model with no cytoplasmic effect 
included, respectively. (b) Single-QTL scan for the model suggested by 
Tang et al. [8]. The −log(p) profiles were obtained from single-QTL analy-
sis of the genome for a full model (red line) and reduced model with no 
cytoplasmic effect included (black line). 

4  Discussion 

In this article, we proposed a framework for dissection of 
complex cytonuclear epistasis based on a reciprocal mating 
design. The proposed model incorporates different genetic 
effects, such as intranuclear interactions and QTL×QTL× 
cytoplasm interactions. However, this model does not pro-
vide a conclusive solution and many questions remain to be 
answered. An important issue for future research to resolve 
involves its applicability for marker analysis or QTL map-
ping. In the present study, we implemented the model under 
the assumption that each marker was linked to a QTL. Thus, 
it is a method for marker analysis rather than true QTL 
mapping. However, if the marker density is relatively high, 
for example with an average interval of less than 5 cM, we 
are confident that the QTL involved can be detected with 
this approach. Furthermore, the LOD score, instead of the 
p-value used in the present study, can be obtained by the 
method suggested by Haley and Knott [13]. In addition, 
maximum likelihood estimation and a Bayesian method can 
be incorporated in the model for QTL mapping.  

Cytoplasmic effect acts as an important and significant 
covariate and should be taken into account for complex trait 
mapping. Consideration of cytoplasmic effect reduces re-

sidual variation and thus enhances the ability to detect QTL. 
In our previous model, this covariate was treated as an addi-
tive effect and was easily incorporated into an interval map-
ping model [8]. In the current study, cytoplasmic effect was 
treated as an interactive covariate and allowed to interact 
with both QTL, as well as with the QTL×QTL interaction. 
However, cytoplasmic effect, as a fixed effect, can be treated 
in two ways in a multiple regression analysis. One method 
is illustrated by the above model. Cytoplasmic effect (c) 
was estimated once in a regression analysis for each QTL 
pair, and was estimated (k2 − k)/2 times, assuming the pres-
ence of k markers in the whole genome. The other method 
uses the equation yʹ = y – c to calculate a new dependent 
variable, and then regression is implemented on the reduced 
model without inclusion of the c effect. The two methods 
have a very weak influence on parameter estimation, espe-
cially for parameters with a significant contribution (Figure 
2(a)). The –log(p) profile of the 2D genome scan on the 
reduced model is plotted on the upper left triangle of Figure 
2(a). Note that when c is reduced from the full model, the 
F-test statistic for the model decreases and the p-value in-
creases correspondingly about 105 times. The –log(p) pro-
file is plotted in Figure 2(b) (black line) for the single-QTL 
genome scan under the reduced model without inclusion of 
the c effect. The full and reduced models produced almost 
identical results, regardless of whether a 2D genome scan or 
single-QTL genome scan was used. 

In practice, a data set often contains missing data. Two 
situations occurred in the present study, namely missing 
individual marker genotypes and a missing genotype com-
bination for a QTL pair. Several existing methods have been 
suggested for instances where a marker genotype is missing, 
such as a hidden Markov model. However, when a genotype 
combination is missing, a non-full rank model produces 
biased results because of complex multicolinearity. To deal 
with this problem, variables that are a linear combination of 
other variables can be deleted from the regression model. 
For example, if only genotype Q1Q1Q2Q2 was missing in a 
QTL pair, 

2 1a d ci  would confound with other effects and 

should be removed from the model for construction of a full 
rank model. Although this strategy may not be the best so-
lution, it enabled us to obtain estimates for the other effects.  

Further analysis of interesting peaks and gaps in the 
linkage group is required. For these interesting genomic 
regions, a fine-scale grid scan can be performed by insertion 
of a dummy marker at a fixed interval with a hidden Mar-
kov model. In our linkage map, a 40 cM gap was located on 
the end of chromosome 3, which interacted with chromo-
some 5 detected by the 2D genome scan (Figure 2). For this 
interesting peak, a fine-scale grid scan was implemented by 
inserting dummy markers at an average spacing of 5 cM 
under the full model (Figure 3). The highest peak over the 
2D surface was increased, and the corresponding p-value 
was 2.73 × 10−21, whereas the p-value was 1.01×10−19 in the   
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Figure 3  Fine grid two-dimensional genome-scan analysis at an average 
spacing of 5 cM on chromosome 3 versus chromosome 5 under the full 
model. The highest peak over the 2D surface was increased, with a p-value 
of 2.73 × 10−21. The p-value was 1.01 × 10−19 in the same chromosome 
region in Figure 2(a) (lower right triangle). 

same region in Figure 2(a) (lower right triangle), which in-
dicated that a fine-scale grid scan can increase the confi-
dence with which QTL are detected.   
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